125
Views
27
CrossRef citations to date
0
Altmetric
Original Research

Synergistic interactions between antimicrobial peptides derived from plectasin and lipid nanocapsules containing monolaurin as a cosurfactant against Staphylococcus aureus

, , , , , , & show all
Pages 5687-5699 | Published online: 08 Aug 2017

References

  • LevinsonWEReview of Medical Microbiology and Immunology13th edCopenhagen, DenmarkThe McGraw-Hill Companies2014
  • FitzgeraldJRSturdevantDEMackleSMGillSRMusserJMEvolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemicProc Natl Acad Sci U S A200198158821882611447287
  • GordonRJLowyFDPathogenesis of methicillin-resistant Staphylococcus aureus infectionClin Infect Dis200846Suppl 5S350S35918462090
  • JensenSOLyonBRGenetics of antimicrobial resistance in Staphylococcus aureusFuture Microbiol20094556558219492967
  • HardyKJHawkeyPMGaoFOOppenheimBAMethicillin resistant Staphylococcus aureus in the critically illBr J Anaesth200492112113014665563
  • MygindPHFischerRLSchnorrKMPlectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungusNature20054737061975980
  • SchneiderTKruseTWimmerRPlectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid IIScience201032859821168117220508130
  • XiongYQHadyWADeslandesAEfficacy of NZ2114, a novel plectasin-derived cationic antimicrobial peptide antibiotic, in experimental endocarditis due to methicillin-resistant Staphylococcus aureusAntimicrob Agents Chemother201155115325533021859940
  • AndesDCraigWNielsenLAKristensenHHIn vivo pharmacodynamic characterization of a novel plectasin antibiotic, NZ2114, in a murine infection modelAntimicrob Agents Chemother20095373003300919414576
  • OstergaardCSandvangDFrimodt-MøllerNKristensenHHHigh cerebrospinal fluid (CSF) penetration and potent bactericidal activity in CSF of NZ2114, a novel plectasin variant, during experimental pneumococcal meningitisAntimicrob Agents Chemother20095341581158519188395
  • BrinchKSFrimodt-MøllerNHøibyNKristensenHHInfluence of antidrug antibodies on plectasin efficacy and pharmacokineticsAntimicrob Agents Chemother200953114794480019687247
  • BrinchKSTulkensPMVan BambekeFFrimodt-MøllerNHøibyNKristensenHHIntracellular activity of the peptide antibiotic NZ2114: studies with Staphylococcus aureus and human THP-1 monocytes, and comparison with daptomycin and vancomycinJ Antimicrob Chemother20106581720172420534628
  • LociuroSNeveSKjærulfSNordkildPAP138, a second generation plectasin, shows good bactericidal properties and long post-antibiotic effect (PAE) in ATCC29213. 25th ECCMIDEur Cong Clin Microbiol Infect Dis2015
  • SchlievertPMPetersonMLGlycerol monolaurate antibacterial activity in broth and biofilm culturesPLoS One20127e4035022808139
  • PreussHGEchardBDadgarAEffects of essential oils and monolaurin on Staphylococcus aureus: in vitro and in vivo studiesToxicol Mech Method2005154279285
  • HessDJHenry-StanleyMJWellsCLAntibacterial synergy of glycerol monolaurate and aminoglycosides in Staphylococcus aureus biofilmsAntimicrob Agents Chemother201458116970697325182634
  • MuellerEASchlievertPMNon-aqueous glycerol monolaurate gel exhibits antibacterial and anti-biofilm activity against Gram-positive and Gram-negative pathogensPLoS One201510e012028025799455
  • UmerskaACassisaVMatouguiNJoly-GuillouMLEveillardMSaulnierPAntibacterial action of lipid nanocapsules containing fatty acids or monoglycerides as co-surfactantsEur J Pharm Biopharm201610810011027597268
  • MatouguiNBogeLGrooACLipid-based nanoformulations for peptide deliveryInt J Pharm20165021–2809726899976
  • UmerskaAMouzouviCRBigotASaulnierPFormulation and nebulization of fluticasone propionate-loaded lipid nanocarriersInt J Pharm20154931–222423226183331
  • ValcourtCSaulnierPUmerskaASynergistic interactions between doxycycline and terpenic components of essential oils encapsulated within lipid nanocapsules against gram negative bacteriaInt J Pharm20164981–2233126631640
  • UmerskaAMatouguiNGrooACSaulnierPUnderstanding the adsorption of salmon calcitonin, antimicrobial peptide AP114 and polymyxin B onto lipid nanocpasulesInt J Pharm20165061–219120027113868
  • BogeLBysellHRingstadLLipid-based liquid crystals as carriers for antimicrobial peptides: phase behavior and antimicrobial effectLangmuir201632174217422827033359
  • WhiteRLBurgessDSManduruMBossoJAComparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E testAntimicrob Agents Chemother1996408191419188843303
  • MinkovIIvanovaTzPanaiotovIProustJSaulnierPReorganization of lipid nanocapsules at air–water interface. I. Kinetics of surface film formationColloids Surf B Biointerfaces2005451142316111870
  • RampallISmartJRLeightonDTThe influence of surface roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flowJ Fluid Mech1997339124
  • HartigSMGreeneRRDasGuptaJMultifunctional nanoparticu-late polyelectrolyte complexesPharm Res200724122353236917932727
  • SaptarshiSRDuschiALopataALInteractions of nanoparticles with proteins: relation to bio-reactivity of the nanoparticleJ Nanobiotechnol2013112638
  • MahlapuuMHåkanssonJRingstadLBjörnCAntimicrobial peptides: an emerging category of therapeutic agentsFront Cell Infect Microbiol2016619428083516
  • UmerskaAPaluchKJSantos-MartinezMJMedinaCCorriganOITajberLChondroitin-based nanoplexes as peptide delivery systems – investigations into the self-assembly process, solid-state and extended release characteristicsEur J Pharm Biopharm20159324225325907005
  • UmerskaACorriganOITajberLDesign of chondroitin sulfate-based polyelectrolyte nanoplexes: Formation of nanocarriers with chitosan and a case study of salmon calcitoninCarbohydr Polym201715627628427842824
  • UmerskaACorriganOITajberLIntermolecular interactions between salmon calcitonin, hyaluronate, and chitosan and their impact on the process of formation and properties of peptide-loaded nanoparticlesInt J Pharm20144771–210211225447822
  • SikkemaJde BontJAPoolmanBMechanisms of membrane toxicity of hydrocarbonsMicrobiol Rev19955922012227603409
  • SchlievertPMDeringerJRKimMHProjanSJNovickRPEffect of glycerol monolaurate on bacterial growth and toxin productionAntimicrob Agents Chemother19923636266311622174
  • LinYCSchlievertPMAndersonMJGlycerol monolaurate and dodecylglycerol effects on Staphylococcus aureus and toxic shock syndrome toxin-1 in vitro and in vivoPLoS One2009410e749919838303
  • VetterSMSchlievertPMGlycerol monolaurate inhibits virulence factor production in Bacillus anthracisAntimicrob Agents Chemother20054941302130515793101
  • KabaraJJVrableRAntimicrobial lipids: natural and synthetic acids and monoglyceridesLipids1977129753759409896
  • BatovskaDITodorovaITTsvetkovaIVNajdenskiHMAntibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationshipsPol J Microbiol2009581434719469285
  • ProjanSJBrown-SkrobotSSchlievertPMVandeneschFNovickRPGlycerol monolaurate inhibits the production of β-lactamase, toxic schock syndrome toxin-1, and other staphylococcal exoproteins by interfering with signal transductionJ Bacteriol199417614420442098021206
  • BergssonGArfinnssonJSteingrímssonÓThormarHKilling of Gram-positive cocci by fatty acids and monoglyceridesAPMIS20011091067067811890570
  • GottliebCTThomsenLEIngmerHMygindPHKristensenHHGramLAntimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expressionBMC Microbiol2008820519036162
  • ZhangYTengDMaoRHigh expression of a plectasin-derived peptide NZ2114 in Pichia pastoris and its pharmacodynamics, post-antibiotic and synergy against Staphylococcus aureusAppl Microbiol Biotechnol201498268169423624708
  • ZasloffMAntimicrobial peptides of multicellular organismsNature2002415687038939511807545
  • HancockRESahlHGAntimicrobial and host-defense peptides as new anti-infective therapeutic strategiesNat Biotechnol200624121551155717160061
  • NizetVUnderstanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targetsJ Allergy Clin Immunol20071201132217606031
  • PasupuletiMSchmidtchenAMalmstenMAntimicrobial peptides: key components of the innate immune systemCrit Rev Biotechnol201232214317122074402
  • AnderssonDIHughesDKubicek-SutherlandJZMechanisms and consequences of bacterial resistance to antimicrobial peptidesDrug Resists Updat2016264357
  • PeschelAJackRWOttoMStaphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysineJ Exp Med200119391067107611342591
  • RuzinANovickRPGlycerol monolaurate inhibits induction of vancomycin resistance in Enterococcus faecalisJ Bacteriol199818011821859422612