494
Views
35
CrossRef citations to date
0
Altmetric
Review

Mucoadhesive electrospun nanofibers for drug delivery systems: applications of polymers and the parameters’ roles

, , , &
Pages 5271-5285 | Published online: 15 Jul 2019

References

  • Torres-Martinez EJ, Cornejo-Bravo JM, Serrano-Medina A, Perez-Gonzalez GL, Villarreal-Gómez LJ. A summary of electrospun nanofibers as drug delivery system: drugs loaded and biopolymers used as matrices. Curr Drug Deliv. 2018;15(10):1360–1374. doi:10.2174/156720181566618072311432630033869
  • Villarreal-Gómez LJ, Cornejo-Bravo JM, Vera-Graziano R, Grande D. Electrospinning as a powerful technique for biomedical applications: a critically selected survey. J Biomater Sci Polym Ed. 2016;27(2):157–176. doi:10.1080/09205063.2015.111688526540235
  • Son YJ, Kim WJ, Yoo HS. Therapeutic applications of electrospun nanofibers for drug delivery systems. Arch Pharm Res. 2014;37(1):69–78. doi:10.1007/s12272-013-0284-224234913
  • Mendes AC, Sevilla Moreno J, Hanif M, Douglas T EL, Chen M, Chronakis IS. Morphological, mechanical and mucoadhesive properties of electrospun chitosan/phospholipid hybrid nanofibers. Int J Mol Sci. 2018;19(8):2266. doi:10.3390/ijms19082266
  • Behbood L, Karimi S, Mirzaei E, Mohammadi G, Azami M, Arkan E. Mucoadhesive chitosan electrospun nanofibers containing tetracycline and triamcinolone as a drug delivery system. Fibers Polym. 2018;19(7):1454–1462. doi:10.1007/s12221-018-8087-1
  • Brako F, Raimi-Abraham B, Mahalingam S, Craig DQM, Edirisinghe M. Making nanofibres of mucoadhesive polymer blends for vaginal therapies. Eur Polym J. 2015;70:186–196. doi:10.1016/j.eurpolymj.2015.07.006
  • Dott C, Tyagi C, Tomar LK, et al. A mucoadhesive electrospun nanofibrous matrix for rapid oramucosal drug delivery. J Nanomater. 2013:2013. doi:10.1155/2013/924947.
  • Mackie AR, Goycoolea FM, Menchicchi B, et al. Innovative methods and applications in mucoadhesion research. Macromol Biosci. 2017;17(8):1–32. doi:10.1002/mabi.201600534
  • Weng L, Xie J. Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives. Curr Pharm Des. 2015;21(15):1944–1959. Available from: https://www.ncbi.nlm.nih.gov/pubmed/2573266525732665
  • Vieth M, Siegel MG, Higgs RE, et al. Characteristic physical properties and structural fragments of marketed oral drugs. J Med Chem. 2004;47(1):224–232. doi:10.1021/jm030267j14695836
  • Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD, Donnelly RF. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011;3(1):89–100. doi:10.4103/0975-7406.7647821430958
  • Boddupalli B, Mohammed Z, Nath R, Banji D. Mucoadhesive drug delivery system: an overview. J Adv Pharm Technol Res. 2010;1(4):381. doi:10.4103/0110-5558.7643622247877
  • Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–347. doi:10.1016/j.biotechadv.2010.01.00420100560
  • Xu J, Strandman S, hu JXX, Barralet J, Cerruti M. Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials. 2015;37:395–404. doi:10.1016/j.biomaterials.2014.10.02425453967
  • Valizadeh A, Mussa Farkhani S. Electrospinning and electrospun nanofibres. IET Nanobiotechnol. 2014;8(2):83–92. doi:10.1049/iet-nbt.2012.004025014079
  • Khalf A, Madihally SV. Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm. 2017;112:1–17. doi:10.1016/j.ejpb.2016.11.01027865991
  • Ahmed FE, Lalia BS, Hashaikeh R. A review on electrospinning for membrane fabrication: challenges and applications. Desalination. 2015;356:15–30. doi:10.1016/j.desal.2014.09.033
  • Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2015. doi:10.1016/j.arabjc.2015.11.015
  • Garg K, Bowlin GL. Electrospinning jets and nanofibrous structures. Biomicrofluidics. 2011;5(1):1–19. doi:10.1063/1.3567097
  • Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–2253. doi:10.1016/S0266-3538(03)00178-7
  • Thakkar S, Misra M. Electrospun polymeric nanofibers: new horizons in drug delivery. Eur J Pharm Sci. 2017;107(July):148–167. doi:10.1016/j.ejps.2017.07.00128690099
  • Duque Sánchez LM, Rodriguez L, López M. Electrospinning: the nanofibers age. Rev Iberoam Polímeros Vol Iber Polímeros. 2014;14(141):10–27. Available from: http://www.ehu.eus/reviberpol/pdf/ENE13/duque.pdf
  • Mit-Uppatham C, Nithitanakul M, Supaphol P. Ultratine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter RID C-4353-2008. Macromol Chem Phys. 2004;205(17):2327–2338. doi:10.1002/macp.200400225
  • Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules. 2004;37(2):573–578. doi:10.1021/ma0351975
  • Shahabadi SMS, Kheradmand A, Montazeri V, Ziaee H. Effects of process and ambient parameters on diameter and morphology of electrospun polyacrylonitrile nanofibers. Polym Sci Ser A. 2015;57(2):155–167. doi:10.1134/S0965545X15020157
  • Rodoplu D, Mutlu M. Effects of electrospinning setup and process parameters on nanofiber morphology intended for the modification of quartz crystal microbalance surfaces. J Eng Fiber Fabr. 2012;7(2):118–123.
  • Shinkar DM, Dhake AS, Setty CM. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems. PDA J Pharm Sci Technol. 2012;66(5):466–500. doi:10.5731/pdajpst.2012.0087723035030
  • Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev. 2005;57(11):1666–1691. doi:10.1016/j.addr.2005.07.00316183164
  • Ma J, Rubin BK, Voynow JA. Mucins, mucus, and goblet cells. Chest. 2017. doi:10.1016/j.chest.2017.11.008
  • Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery - A promising option for orally less efficient drugs. J Control Release. 2006;114(1):15–40. doi:10.1016/j.jconrel.2006.04.01216828915
  • Carvalho F, Bruschi ML, Evangelista RC, Gremiao MPD. Mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 1997;23(5):489–515. doi:10.4103/0975-7406.76478
  • Singh R, Sharma D, Garg R. Review on mucoadhesive drug delivery system with special emphasis on buccal route: an important tool in designing of novel controlled drug delivery system for the effective delivery of pharmaceuticals. J Dev Drugs. 2017;06(01):1–12. doi:10.4172/2329-6631.1000169
  • Fieldson G, Barbari TA. The Use of FTIR-ATR Spectroscopy to Characterize Diffusion in Polymers. Vol. 34 1993. Oxford, UK: Butterworth-Heinemann Ltd. doi:10.1016/0032-3861(93)90765-3
  • Mansuri S, Kesharwani P, Jain K, Tekade RK, Jain NK. Mucoadhesion: A promising approach in drug delivery system. React Funct Polym. 2016;100:151–172. doi:10.1016/j.reactfunctpolym.2016.01.011
  • Rodriguez I, Cerezo A, Salem II. Sistemas de liberación bioadhesivos bioadhesive delivery systems. Ars Pharm. 2000;1(41):115–128. Available from: http://150.214.24.132/ars/pdf/186.pdf
  • Mahajan S, Kaur A, Aggarwal G, Harikumar SL. Mucoadhesive drug delivery system: a review. Int J Drug Dev Res. 2013;5(1):11–20. Available from: http://www.ijddr.in/drug-development/mucoadhesive-drug-delivery-system-a-review.php?aid=5005
  • Schattling P, Taipaleenmäki E, Zhang Y, Städler B. A polymer chemistry point of view on mucoadhesion and mucopenetration. Macromol Biosci. 2017;1700060:1–20. doi:10.1002/mabi.201700060
  • Harding SE. Mucoadhesive interactions. Biochem Soc Trans. 2003;31(5):1036–1041. doi:10.1042/BST031103614505475
  • Quintanar-Guerrero D, Villalobos-García R, Alvarez-Colín E, Cornejo-Bravo JM. In vitro evaluation of the bioadhesive properties of hydrophobic polybasic gels containing N,N-dimethylaminoethyl methacrylate-co-methyl methacrylate. Biomaterials. 2001;22(9):957–961. doi:10.1016/S0142-9612(00)00260-X11311014
  • Campisi G, Paderni C, Saccone R, Di Fede O, Wolff A, Giannola LI. Human buccal mucosa as an innovative site of drug delivery. Curr Pharm Des. 2010;16(6):641–652. doi:10.2174/13816121079088377820388074
  • Escobar-Chavez JJ, Merino-Sanjuan V, Lopez-Cervantes M, et al. The tape-stripping technique as a method for drug quantification in skin. J Pharm Pharm Sci. 2008;11(1):104–130. doi:10.1016/j.ijpharm.2004.05.01618445368
  • Hao J, Heng PWS. Buccal delivery systems. Drug Dev Ind Pharm. 2003;29(8):821–832. doi:10.1081/DDC-12002417814570303
  • Smart JD. Buccal drug delivery. Expert Opin Drug Deliv. 2005;2(3):507–517. doi:10.1517/17425247.2.3.50716296771
  • Russo E, Selmin F, Baldassari S, et al. A focus on mucoadhesive polymers and their application in buccal dosage forms. J Drug Deliv Sci Technol. 2016;32:113–125. doi:10.1016/j.jddst.2015.06.016
  • Roy SK, Prabhakar B. Bioadhesive polymeric platforms for transmucosal drug delivery systems - A review. Trop J Pharm Res. 2010;9(1):91–104. doi:10.4314/tjpr.v9i1.52043
  • Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57(11):1556–1568. doi:10.1016/j.addr.2005.07.00116198441
  • Koh LD, Cheng Y, Teng CP, et al. Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci. 2015;46:86–110. doi:10.1016/j.progpolymsci.2015.02.001
  • Teodorescu M, Bercea M, Morariu S. Biomaterials of poly(vinyl alcohol) and natural polymers. Polym Rev. 2018;58(2):247–287. doi:10.1080/15583724.2017.1403928
  • Ye M, Jiang R, Zhao J, Zhang J, Yuan X, Yuan X. In situ formation of adhesive hydrogels based on PL with laterally grafted catechol groups and their bonding efficacy to wet organic substrates. J Mater Sci Mater Med. 2015;26(12):1–13. doi:10.1007/s10856-015-5608-y
  • Peppas NA, Huang Y. Nanoscale technology of mucoadhesive interactions. Adv Drug Deliv Rev. 2004;56(11):1675–1687. doi:10.1016/j.addr.2004.03.00115350296
  • Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2(4):215. doi:10.4103/2231-4040.9087622247888
  • Garg T, Goyal AK. Biomaterial-based scaffolds–current status and future directions. Expert Opin Drug Deliv. 2014;11(5):767–789. doi:10.1517/17425247.2014.89101424669779
  • Duggan S, Cummins W, O’ Donovan O, Hughes H, Owens E. Thiolated polymers as mucoadhesive drug delivery systems. Eur J Pharm Sci. 2017;100:64–78. doi:10.1016/j.ejps.2017.01.00828087353
  • Rossi S, Sandri G, Caramella CM. Buccal drug delivery: a challenge already won? Drug Discov Today Technol. 2005;2(1):59–65. doi:10.1016/j.ddtec.2005.05.01824981756
  • Khoshnevisan K, Daneshpour M, Barkhi M, Gholami M, Samadian H, Maleki H. The promising potentials of capped gold nanoparticles for drug delivery systems. J Drug Target. 2018;26(7):525–532. doi:10.1080/1061186X.2017.138779028972797
  • Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2012;64(SUPPL):163–174. doi:10.1016/j.addr.2012.09.028
  • Pundir S, Badola A, Sharma D. Sustained release matrix technology and recent advance in matrix drug delivery system: a review. Int J Drug Res Tech. 2013;3(1):12–20. ISSN 2277-1506.
  • Montenegro-Nicolini M, Morales JO. Overview and future potential of buccal mucoadhesive films as drug delivery systems for biologics. AAPS Pharm Sci Tech. 2017;18(1):3–14. doi:10.1208/s12249-016-0525-z
  • Dolci LS, Liguori A, Panzavolta S, et al. Non-equilibrium atmospheric pressure plasma as innovative method to crosslink and enhance mucoadhesion of econazole-loaded gelatin films for buccal drug delivery. Colloids Surf B Biointerfaces. 2018;163:73–82. doi:10.1016/j.colsurfb.2017.12.03029278802
  • Sheikhpour M, Barani L, Kasaeian A. Biomimetics in drug delivery systems: a critical review. J Control Release. 2017;253:97–109. doi:10.1016/j.jconrel.2017.03.02628322976
  • Schneider C, Langer R, Loveday D, Hair D. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. J Control Release. 2017;262(July):284–295. doi:10.1016/j.jconrel.2017.08.00428789964
  • Badshah M, Ullah H, Khan SA, Park JK, Khan T. Preparation, characterization and in-vitro evaluation of bacterial cellulose matrices for oral drug delivery. Cellulose. 2017;24(11):5041–5052. doi:10.1007/s10570-017-1474-8
  • Malik R, Garg T, Goyal AK, Rath G. Diacerein-Loaded novel gastroretentive nanofiber system using PLLA: development and in vitro characterization. Artif Cells Nanomed Biotechnol. 2016;44(3):928–936. doi:10.3109/21691401.2014.100049225826646
  • Nguyen S, Hiorth M. Advanced drug delivery systems for local treatment of the oral cavity. Ther Deliv. 2015;6(5):197–210. doi:10.4155/tde.15.525690087
  • Silva NHCS, Rodrigues AF, Almeida IF, et al. Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr Polym. 2014;106(1):264–269. doi:10.1016/j.carbpol.2014.02.01424721077
  • Mura P, Cirri M, Mennini N, Casella G, Maestrelli F. Polymeric mucoadhesive tablets for topical or systemic buccal delivery of clonazepam: effect of cyclodextrin complexation. Carbohydr Polym. 2016;152:755–763. doi:10.1016/j.carbpol.2016.07.07527516327
  • Rudzinski WE, Palacios A, Ahmed A, Lane MA, Aminabhavi TM. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydr Polym. 2016;147:323–332. doi:10.1016/j.carbpol.2016.04.04127178938
  • Geetha P, Sivaram AJ, Jayakumar R, Mohan CG. Integration of in silico modeling, prediction by binding energy and experimental approach to study the amorphous chitin nanocarriers for cancer drug delivery. Carbohydr Polym. 2016;142:240–249. doi:10.1016/j.bcmd.2016.11.01126917396
  • Pan Q, Lv Y, Williams GR, et al. Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems. Carbohydr Polym. 2016;151:812–820. doi:10.1016/j.carbpol.2016.06.02427474628
  • Ghorbani M, Bigdeli B, Jalili-Baleh L, et al. Curcumin-lipoic acid conjugate as a promising anticancer agent on the surface of gold‑iron oxide nanocomposites: a pH-sensitive targeted drug delivery system for brain cancer theranostics. Eur J Pharm Sci. 2018;114:175–188. doi:10.1016/j.ejps.2017.12.00829248558
  • Modaresi SMS, Mehr SE, Faramarzi MA, et al. Preparation and characterization of self-assembled chitosan nanoparticles for the sustained delivery of streptokinase: an in vivo study. Pharm Dev Technol. 2014;19(5):593–597. doi:10.3109/10837450.2013.81354223859703
  • Baharifar H, Amani A. Cytotoxicity of Chitosan/Streptokinase Nanoparticles as a Function of Size: An Artificial Neural Networks Study. Vol. 12 Elsevier Inc.;2016. Amsterdam, Netherlands. doi:10.1016/j.nano.2015.09.002
  • Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS. Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr Polym. 2014;102(1):884–892. doi:10.1016/j.carbpol.2013.10.07024507360
  • Rogina A. Electrospinning process: versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl Surf Sci. 2014;296:221–230. doi:10.1016/j.apsusc.2014.01.098
  • Sedghi R, Shaabani A, Mohammadi Z, Samadi FY, Isaei E. Biocompatible electrospinning chitosan nanofibers: a novel delivery system with superior local cancer therapy. Carbohydr Polym. 2017;159:1–10. doi:10.1016/j.carbpol.2016.12.01128038737
  • Ghorbani FM, Kaffashi B, Shokrollahi P, Seyedjafari E, Ardeshirylajimi A. PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydr Polym. 2015;118:133–142. doi:10.1016/j.carbpol.2014.10.07125542118
  • Ghorani B, Tucker N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll. 2015;51:227–240. doi:10.1016/j.foodhyd.2015.05.024
  • Antunes BP, Moreira AF, Gaspar VM, Correia IJ. Chitosan/arginine-chitosan polymer blends for assembly of nanofibrous membranes for wound regeneration. Carbohydr Polym. 2015;130:104–112. doi:10.1016/j.carbpol.2015.04.07226076606
  • Khoshnevisan K, Maleki H, Samadian H, et al. Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances. Carbohydr Polym. 2018;198:131–141. doi:10.1016/j.carbpol.2018.06.07230092983
  • Blakney AK, Ball C, Krogstad EA, Woodrow KA. Electrospun fibers for vaginal anti-HIV drug delivery. Antiviral Res. 2013;100(SUPPL):S9–S16. doi:10.1016/j.antiviral.2013.09.02224188701
  • Hua D, Liu Z, Wang F, et al. pH responsive polyurethane (core) and cellulose acetate phthalate (shell) electrospun fibers for intravaginal drug delivery. Carbohydr Polym. 2016;151:1240–1244. doi:10.1016/j.carbpol.2016.06.06627474676
  • Sharma R, Garg T, Goyal AK, Rath G. Development, optimization and evaluation of polymeric electrospun nanofiber: a tool for local delivery of fluconazole for management of vaginal candidiasis. Artif Cells Nanomed Biotechnol. 2016;44(2):524–531. doi:10.3109/21691401.2014.96619425315503
  • Zong S, Wang X, Yang Y, et al. The use of cisplatin-loaded mucoadhesive nanofibers for local chemotherapy of cervical cancers in mice. Eur J Pharm Biopharm. 2015;93:127–135. doi:10.1016/j.ejpb.2015.03.02925843238
  • Aggarwal U, Goyal AK, Rath G. Development and characterization of the cisplatin loaded nanofibers for the treatment of cervical cancer. Mater Sci Eng C. 2017;75:125–132. doi:10.1016/j.msec.2017.02.013
  • Colley HE, Said Z, Santocildes-Romero ME, et al. Pre-clinical evaluation of novel mucoadhesive bilayer patches for local delivery of clobetasol-17-propionate to the oral mucosa. Biomaterials. 2018;178:134–146. doi:10.1016/j.biomaterials.2018.06.00929929183
  • Muzzarelli RAA, El Mehtedi M, Bottegoni C, Aquili A, Gigante A. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar Drugs. 2015;13(12):7314–7338. doi:10.3390/md1312706826690453
  • Mašek J, Lubasová D, Lukáč R, et al. Multi-layered nanofibrous mucoadhesive films for buccal and sublingual administration of drug-delivery and vaccination nanoparticles - important step towards effective mucosal vaccines. J Control Release. 2017;249:183–195. doi:10.1016/j.jconrel.2016.07.03627469472
  • Tonglairoum P, Ngawhirunpat T, Rojanarata T, Panomsuk S, Kaomongkolgit R, Opanasopit P. Fabrication of mucoadhesive chitosan coated polyvinylpyrrolidone/cyclodextrin/clotrimazole sandwich patches for oral candidiasis. Carbohydr Polym. 2015;132:173–179. doi:10.1016/j.carbpol.2015.06.03226256338
  • Malik R, Garg T, Goyal AK, Rath G. Polymeric nanofibers: targeted gastro-retentive drug delivery systems. J Drug Target. 2015;23(2):109–124. doi:10.3109/1061186X.2014.96571525268275
  • Ignatious F, Sun L, Lee C-P, Baldoni J. electrospun nanofibers in oral drug delivery. Pharm Res. 2010;27(4):576–588. doi:10.1007/s11095-010-0061-620143253
  • Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011;77(2):187–199. doi:10.1016/j.ejpb.2010.11.02321130875
  • Grewal H, Dhakate SR, Goyal AK, Markandeywar TS, Malik B, Rath G. Development of transmucosal patch using nanofibers. Artif Cells Blood Substit Biotechnol. 2012;40(1–2):146–150. doi:10.3109/10731199.2011.637924
  • Tyagi C, Tomar L, Choonara YE, Du Toit LC, Kumar P, Pillay V. Electrospun nanofiber matrix with a mucoadhesive backing film for oramucosal drug delivery. Int J Mater Mech Manuf. 2014;2(1):81–85. doi:10.7763/IJMMM.2014.V2.105
  • Kilicarslan M, Koerber M, Bodmeier R. In situ forming implants for the delivery of metronidazole to periodontal pockets: formulation and drug release studies. Drug Dev Ind Pharm. 2014;40(5):619–624. doi:10.3109/03639045.2013.87344924369747
  • Samprasit W, Akkaramongkolporn P, Ngawhirunpat T, Rojanarata T, Kaomongkolgit R, Opanasopit P. Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam. Int J Pharm. 2015;487(1–2):213–222. doi:10.1016/j.ijpharm.2015.04.04425899284
  • Illangakoon UE, Gill H, Shearman GC, et al. Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning. Int J Pharm. 2014;477(1–2):369–379. doi:10.1016/j.ijpharm.2014.10.03625455779
  • Singh H, Sharma R, Joshi M, Garg T, Goyal AK, Rath G. Transmucosal delivery of Docetaxel by mucoadhesive polymeric nanofi bers. Artif Cells Nanomed Biotechnol. 2015;43(4):263–269. doi:10.3109/21691401.2014.88544224621011
  • Brako F, Thorogate R, Mahalingam S, Raimi-Abraham B, Craig DQM, Edirisinghe M. Mucoadhesion of progesterone-loaded drug delivery nanofiber constructs. ACS Appl Mater Interfaces. 2018;acsami.8b03329. doi:10.1021/acsami.8b03329
  • Moreno I, González-González V, Romero-García J. Control release of lactate dehydrogenase encapsulated in poly (vinyl alcohol) nanofibers via electrospinning. Eur Polym J. 2011;47(6):1264–1272. doi:10.1016/j.eurpolymj.2011.03.005
  • Garg T, Rath G, Goyal AK. Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery. J Drug Target. 2015;23(3):202–221. doi:10.3109/1061186X.2014.99289925539071
  • Hotaling NA, Khristov V, Wan Q, et al. Nanofiber scaffold-based tissue-engineered retinal pigment epithelium to treat degenerative eye diseases. J Ocul Pharmacol Ther. 2016;32(5):272–285. doi:10.1089/jop.2015.015727110730
  • Lee M, Park CG, Huh BK, et al. Sinonasal delivery of resveratrol via mucoadhesive nanostructured microparticles in a nasal polyp mouse model. Sci Rep. 2017;7:40249. doi:10.1038/srep4024928071713
  • Hattenbach L-O, Springer-Wanner C, Hoerauf H, et al. Intravitreal sustained-release steroid implants for the treatment of macular edema following surgical removal of epiretinal membranes. Ophthalmologica. 2017;237(4):232–237. doi:10.1159/00046425928463851
  • Rea W, Doherty VR, Perkins W, Aitchison TC, Mackie RM. Staphylococcus aureus and intra-nasal mupirocin in patients receiving isotretinoin for acne. Br J Dermatol. 1992;126(4):362–366. doi:10.1111/j.1365-2133.1992.tb00679.x1533312
  • Bagnall P, Rizzolo D. Bacterial vaginosis: a practical review. J Am Acad Physician Assist. 2017;30(12):15–21. doi:10.1097/01.JAA.0000526770.60197.fa
  • Velasco Barraza RD, Álvarez Suarez AS, Gómez LV, Paz González JA, Iglesias AL, Vera Graziano R. Designing a low cost electrospinning device for practical learning in a bioengineering biomaterials course. Rev Mex Ing Biomédica. 2016;37(1):7–16. Available from: https://www.redalyc.org/articulo.oa?id=61943766002
  • Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185(1):12–21. doi:10.1016/j.jconrel.2014.04.01824768792