134
Views
11
CrossRef citations to date
0
Altmetric
Original Research

CeO2NPs relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in Leydig cells by enhancing antioxidation

, , , , , & show all
Pages 4601-4611 | Published online: 24 Jun 2019

References

  • Aydogan F, Unlu I, Aydin E, et al. The effect of 2100 MHz radiofrequency radiation of a 3G mobile phone on the parotid gland of rats. Am J Otolaryngol. 2015;36(1):39–46. doi:10.1016/j.amjoto.2014.10.00125456509
  • Hardell L, Carlberg M, Hedendahl LK. Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: a case report. Oncol Lett. 2018;15(5):7871–7883.29725476
  • Poongothai J, Gopenath TS, Manonayaki S. Genetics of human male infertility. Singapore Med J. 2009;50(4):336–347.19421675
  • Bendayan M, Alter L, Swierkowski-Blanchard N, et al. Environment and lifestyle: impacts on male fertility? Gynecol Obstet Fertil Senol. 2018;46(1):47–56.29198589
  • Mortazavi S, Parsanezhad ME, Kazempour M, Davari M, Ghahramani P, Kazempour M. Male reproductive health under threat: short term exposure to radiofrequency radiations emitted by common mobile jammers. J Hum Reprod Sci. 2013;6(2):124–128. doi:10.4103/0974-1208.11717824082653
  • Tenorio BM, Jimenez GC, Morais RN, Torres SM, Albuquerque Nogueira R, Silva Junior VA. Testicular development evaluation in rats exposed to 60 Hz and 1 mT electromagnetic field. J Appl Toxicol. 2011;31:223–230. doi:10.1002/jat.v31.320936650
  • Teerds KJ, Huhtaniemi IT. Morphological and functional maturation of Leydig cells: from rodent models to primates. Hum Reprod Update. 2015;21:310–328. doi:10.1093/humupd/dmv00825724971
  • Sarookhani MR, Rezaei MA, Safari A, Zaroushani V, Ziaeiha M. The influence of 950 MHz magnetic field (mobile phone radiation) on sex organ and adrenal functions of male rabbits. Afr J Biochem. 2011;5(2):65–68.
  • Sehitoglu I, Tumkaya L, Kalkan Y, et al. Biochemical and histopathological effects on the rat testis after exposure to electromagnetic field during fetal period. Arch Esp Urol. 2015;68(6):562–568.26179793
  • Forgács Z, Somosy Z, Kubinyi G, et al. Effect of whole-body 1800MHz GSM-like microwave exposure on testicular steroidogenesis and histology in mice. Reprod Toxicol. 2006;22(1):111–117. doi:10.1016/j.reprotox.2006.04.01116434166
  • Gutschi T, Mohamad Al-Ali B, Shamloul R, Pummer K, Trummer H. Impact of cell phone use on men’s semen parameters. Andrologia. 2011;43(5):312–316. doi:10.1111/and.2011.43.issue-521951197
  • Qin F, Cao H, Yuan H, et al. 1800 MHz radiofrequency fields inhibits testosterone production via CaMKI/RORα pathway. Reprod Toxicol. 2018;81:229–236. doi:10.1016/j.reprotox.2018.08.01430125682
  • Shahin S, Mishra V, Singh SP, Chaturvedi CM. 2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress. Free Radic Res. 2014;48(5):511–525. doi:10.3109/10715762.2014.96041124490664
  • Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants (Basel). 2016;5(2):15. doi:10.3390/antiox5020015
  • Gagnon J, Fromm KM. Toxicity and protective effects of cerium oxide nanoparticles (Nanoceria) depending on their preparation method, particle size, cell type, and exposure route. Eur J Inorg Chem. 2015;2015(27):4510–4517. doi:10.1002/ejic.201500643
  • Caputo F, De Nicola M, Sienkiewicz A, et al. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale. 2015;7(38):15643–15656. doi:10.1039/C5NR03767K26349675
  • Szuromi P. Dispersing small, bimetallic nanoparticles. Science. 2017;358(6369):1397–1399.
  • Zou D, Chu X, Lu W, et al. Effects of cerium oxide nanoparticles on cognitive function in 48 h sleep deprived male mice. J Hyg Res. 2018;47(1):113–118. Chinese
  • Avci B, Akar A, Bilgici B, Tunçel ÖK. Oxidative stress induced by 1.8 GHz radio frequency electromagnetic radiation and effects of garlic extract in rats. Int J Radiat Biol. 2012;88(11):799–805. doi:10.3109/09553002.2012.71150422788526
  • Oksay T, Naziroğlu M, Doğan S, Güzel A, Gümral N, Koşar PA. Protective effects of melatonin against oxidative injury in rat testis induced by wireless (2.45 GHz) devices. Andrologia. 2014;46(1):65–72. doi:10.1111/and.1208023145464
  • Abarikwu SO, Farombi EO, Kashyap M, Pant AB. Atrazine induces transcriptional change in steroidogenesis marker genes in primary cultures of rat Leydig cells. Toxicol In Vitro. 2011;25:1588–1595. doi:10.1016/j.tiv.2011.06.00221693180
  • Yu Y, Han Y, Niu R, et al. Ameliorative effect of VE, IGF-I, and hCG on the fluoride-induced testosterone release suppression in mice Leydig cells. Biol Trace Elem Res. 2018;181(1):95–103. doi:10.1007/s12011-017-1057-428462439
  • Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. J Bioelectricity. 2016;35(2):17.
  • Lai H, Singh NP. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells. Bioelectromagnetics. 2015;18(6):446–454. doi:10.1002/(SICI)1521-186X(1997)18:6<446::AID-BEM7>3.0.CO;2-2
  • Lin YY, Wu T, Liu JY, et al. 1950MHz Radio frequency electromagnetic radiation inhibits testosterone secretion of mouse Leydig cells. Int J Environ Res Public Health. 2017;15(1):17. doi:10.3390/ijerph15010017
  • Zuo WQ, Hu YJ, Yang Y, et al. Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide induced inflammation in vitro model. J Neuroinflammation. 2015;12:105. doi:10.1186/s12974-015-0300-126022358
  • Zirkin BR, Papadopoulos V. Leydig cells: formation, function and regulation. Biol Reprod. 2018;99(1):101–111. doi:10.1093/biolre/ioy05929566165
  • Pomara C, Barone R, Marino Gammazza A, et al. Effects of nandrolone stimulation on testosterone biosynthesis in Leydig cells. J Cell Physiol. 2016;231(6):1385–1391. doi:10.1002/jcp.2517326626779
  • Dasdag S, Tas M, Akdag MZ, Yegin K. Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions. Electromagn Biol Med. 2015;34(1):37–42. doi:10.3109/15368378.2013.86975224460421
  • Wang Y, Chen F, Ye L, Zirkin B, Chen H. Steroidogenesis in Leydig cells: effects of aging and environmental factors. Reproduction. 2017;154(4):R111–122. doi:10.1530/REP-17-006428747539
  • Shetty G, Zhou W, Weng CC, Shao SH, Meistrich ML. Leydig cells contribute to the inhibition of spermatogonial differentiation after irradiation of the rat. Andrology. 2016;4(3):412–424. doi:10.1111/andr.1211026991593
  • Saygin M, Caliskan S, Karahan N, Koyu A, Gumral N, Uguz A. Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field. Toxicol Ind Health. 2011;27(5):455–463. doi:10.1177/074823371038985121310776
  • Qin F, Zhang J, Cao H, et al. Effects of 1800-MHz Radiofrequency fields on circadian rhythm of plasma melatonin and testosterone in male rats. J Toxicol Environ Health. 2012;75(18):1120–1128. doi:10.1080/15287394.2012.699846
  • Rathor PK, Bhat IA, Rather MA, et al. Steroidogenic acute regulatory protein (StAR) gene expression construct: development, nanodelivery and effect on reproduction in air-breathing catfish, clarias batrachus. Int J Biol Macromol. 2017;104(Pt A):1082–1090.28666831
  • Xu Q, Song Y, Chen Y, et al. Molecular cloning and expression patterns of the cholesterol side chain cleavage enzyme (CYP11A1) gene during the reproductive cycle in goose (Anas cygnoides). J Anim Sci Biotechnol. 2015;6:54. doi:10.1186/s40104-015-0053-926702355
  • Li L, Chen X, Zhu Q, et al. Disrupting androgen production of Leydig cells by resveratrol via direct inhibition of human and rat 3β-hydroxysteroid dehydrogenase. Toxicol Lett. 2014;226(1):14–19. doi:10.1016/j.toxlet.2014.01.02224472608
  • Cook DN, Kang HS, Jetten AM. Retinoic acid-related orphan receptors (RORs): regulatory functions in immunity, development, circadian rhythm, and metabolism. Nucl Receptor Res. 2015;2:101185. doi:10.11131/2015/10118526878025
  • Fahrenkrug J, Georg B, Hannibal J, Jørgensen HL. Altered rhythm of adrenal clock genes, StAR and serum corticosterone in VIP receptor 2-deficient mice. J Mol Neurosci. 2012;48(3):584–596. doi:10.1007/s12031-012-9804-722622901
  • Johnson BP, Walisser JA, Liu Y, et al. Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase. Proc Natl Acad Sci USA. 2014;111(52):18757–18762. doi:10.1073/pnas.142170811125512522
  • Doi M, Takahashi Y, Komatsu R, et al. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med. 2010;16(1):67–74. doi:10.1038/nm1110-116720023637
  • Ozguner F, Oktem F, Ayata A, Koyu A, Yilmaz HR. A novel antioxidant agent caffeic acid phenethyl ester prevents long-term mobile phone exposure-induced renal impairment in rat. Mol Cell Biochem. 2005;277(1–2):73–80. doi:10.1007/s11010-005-5074-916132717
  • Yang G, Wright CJ, Hinson MD, et al. Oxidative stress and inflammation modulate Rev-erbalpha signaling in the neonatal lung and affect circadian rhythmicity. Antioxid Redox Signal. 2014;21(1):17–32. doi:10.1089/ars.2013.553924252172
  • Eriksson P, Tal AA, Skallberg A, et al. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci Rep. 2018;8(1):6999. doi:10.1038/s41598-018-25390-z29725117
  • Rubio L, Annangi B, Vila L, Hernández A, Marcos R. Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system. Arch Toxicol. 2015;90(2):269–278. doi:10.1007/s00204-015-1468-y25618551
  • DeCoteau W, Heckman KL, Estevez AY, et al. Cerium oxide nanoparticles with antioxidant properties ameliorate strength and prolong life in mouse model of amyotrophic lateral sclerosis. Nanomedicine. 2016;12(8):2311–2320. doi:10.1016/j.nano.2016.06.00927389143
  • Magnone MC, Langmesser S, Bezdek AC, Tallone T, Rusconi S, Albrecht U. The mammalian circadian clock gene per2 modulates cell death in response to oxidative stress. Front Neurol. 2015;5:289. doi:10.3389/fneur.2014.0028925628599
  • Ariu F, Bogliolo L, Pinna A, et al. Cerium oxide nanoparticles (CeO2NPs) improve the developmental competence of in vitro-matured prepubertal ovine oocytes. Reprod Fertil Dev. 2017;29(5):1046–1056. doi:10.1071/RD1552128442051
  • Akinmuyisitan IW, Gbore FA, Adu OA. Reproductive performance of growing female rabbits (Oryctolagus cuniculus) fed diets supplemented with cerium oxide. Journal of Medical and Bioengineering. 2015;4(3):239–243. doi:10.12720/jomb
  • Popov AL, Popova NR, Selezneva II, Akkizov AY, Ivanov VK. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. Mater Sci Eng C. 2016;68:406–413. doi:10.1016/j.msec.2016.05.103
  • Mittal S, Pandey AK. Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. Biomed Res Int. 2014;2014:891934. doi:10.1155/2014/89193424987704
  • Li Y, Li P, Yu H, Bian Y. Recent advances (2010–2015) in studies of cerium oxide nanoparticles’ health effects. Environ Toxicol Pharmacol. 2016;44:25–29. doi:10.1016/j.etap.2016.04.01127088851
  • Qin F, Shen T, Li J, et al. SF-1 mediates reproductive toxicity induced by cerium oxide nanoparticles in male mice. J Nanobiotechnology. 2019;17(1):41. doi:10.1186/s12951-019-0474-230894193