400
Views
43
CrossRef citations to date
0
Altmetric
Original Research

Curcumin-loaded nanostructured lipid carriers prepared using Peceol™ and olive oil in photodynamic therapy: development and application in breast cancer cell line

, &
Pages 5073-5085 | Published online: 11 Jul 2019

References

  • World Health Organization. Cancer: fact sheet Report; 2018 9 12 Available from: http://www.who.int/news-room/fact-sheets/detail/cancer. Published 2018 Accessed 121, 2018.
  • Hejmadi M. Introduction to Cancer Biology. 2nd Bookboon; 2010 Available from: https://books.google.com.eg/books?id=dLF3UCIWECYC. Accessed 17, 2018.
  • Ibrahim AS, Khaled HM, Mikhail NN, Baraka H, Kamel H. Cancer incidence in Egypt: results of the national population-based cancer registry program. J Cancer Epidemiol. 2014;2014. doi:10.1155/2014/437971.
  • Ellerkamp V, Bortel N, Schmid E, Kirchner B, Armeanu-Ebinger S, Fuchs J. Photodynamic therapy potentiates the effects of curcumin on pediatric epithelial liver tumor cells. Anticancer Res. 2016;36(7):3363–3372.27354595
  • Mehanny M, Hathout RM, Geneidi AS, Mansour S. Exploring the use of nanocarrier systems to deliver the magical molecule; curcumin and its derivatives. J Controlled Release. 2016;225:1–30. doi:10.1016/j.jconrel.2016.01.018
  • Aggarwal BB, Surh YJ, Shishodia S. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. 1st ed. US: Springer; 2007 DOI:10.1007/s13398-014-0173-7.2
  • Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol. 2008;75(4):787–809. doi:10.1016/j.bcp.2007.08.01617900536
  • Kesharwani SS, Ahmad R, Bakkari MA, et al. Site-directed non-covalent polymer-drug complexes for inflammatory bowel disease (IBD): formulation development, characterization and pharmacological evaluation. J Controlled Release. 2018;290:165–179. doi:10.1016/j.jconrel.2018.08.004
  • Souto EB, Wissing SA, Barbosa CM, Müller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm. 2004;278(1):71–77. doi:10.1016/j.ijpharm.2004.02.03215158950
  • Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie. 2006;61(5):375–386.16724531
  • Hommoss A Nanostructured lipid carriers (NLC) in dermal and personal care formulations. Department of Biology, Chemistry and Pharmacy of …. 2009 Available from: https://refubium.fu-berlin.de/handle/fub188/11454. Accessed December 1, 2018.
  • Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12(1):62–76. doi:10.1208/s12249-010-9563-021174180
  • Calixto GMF, Bernegossi J, De Freitas LM, Fontana CR, Chorilli M, Grumezescu AM. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules. 2016;21(3):1–18. doi:10.3390/molecules21030342
  • Montgomery DC, Runger G C. Applied statistics and probability for engineers‎. John Wiley and Sons, Incorporated; 2007:Vii Available from: http://books.google.com/books?id=UyUnAQAAIAAJ&printsec=frontcover%5Cnfile:///Users/Brian_Caudle/Documents/Papers/2007/C.Montgomery/2007C.Montgomery-1.pdf%5Cnpapers://75088281-f09c-4e77-b8c2-14041f4545f6/Paper/p557. Accessed January 15, 2019.
  • Guo Y. Construction of efficient fractional factorial mixed-level designs. 2003 Available from: https://pdfs.semanticscholar.org/23c6/0f77983cde49d50123ca6b4789343dd1edb9.pdf. Accessed January 24, 2019.
  • Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;64(SUPPL):83–101. doi:10.1016/j.addr.2012.09.021
  • Aditya NP, Shim M, Lee I, Lee Y, Im MH, Ko S. Curcumin and genistein coloaded nanostructured lipid carriers: in vitro digestion and antiprostate cancer activity. J Agric Food Chem. 2013;61(8):1878–1883. doi:10.1021/jf305143k23362941
  • Gardouh A. Design and characterization of glyceryl monostearate solid lipid nanoparticles prepared by high shear homogenization. Br J Pharm Res. 2013;3(3):326–346. doi:10.9734/BJPR/2013/2770
  • Jiang W, Huang W, Gao Z, et al. Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia–reperfusion injury in rats. Int J Nanomedicine. 2017;12:3253–3265. doi:10.2147/ijn.s13189328458544
  • Fadel M, Kassab K, Abd El Fadeel DA, Nasr M, El GNM. Comparative enhancement of curcumin cytotoxic photodynamic activity by nanoliposomes and gold nanoparticles with pharmacological appraisal in HepG2 cancer cells and Erlich solid tumor model. Drug Dev Ind Pharm. 2018;44(11):1809–1816. doi:10.1080/03639045.2018.149645129969300
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 65(1–2):55–63. doi:10.1016/0022-1759(83)90303-46606682
  • Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta. 1995 1233(2):134–144. doi:10.1016/0005-2736(94)00235-h7865538
  • Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(SUPPL):131–155. doi:10.1016/S0169-409X(02)00118-7
  • Triplett MD, Rathman JF. Optimization of β-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique. J Nanopart Res. 2009;11(3):601–614. doi:10.1007/s11051-008-9402-3
  • Chen P, Zhang H, Cheng S, Zhai G, Shen C. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids Surf A Physicochem Eng Asp. 2016;506:356–362. doi:10.1016/j.colsurfa.2016.06.054
  • Madane RG, Mahajan HS. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv. 2016;23(4):1326–1334. doi:10.3109/10717544.2014.97538225367836
  • Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomed Nanotechnol Biol Med. 2016;12(1):143–161. doi:10.1016/j.nano.2015.09.004
  • Azhar Shekoufeh Bahari L, Hamishehkar H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv Pharm Bull. 2016;6(2):143–151. doi:10.15171/apb.2016.02127478775
  • Hamdani J, Moës AJ, Amighi K. Physical and thermal characterisation of Precirol® and Compritol® as lipophilic glycerides used for the preparation of controlled-release matrix pellets. Int J Pharm. 2003;260(1):47–57. doi:10.1016/S0378-5173(03)00229-112818809
  • Weiss J, Muschiolik G. Factors affecting the droplet size of water-in-oil emulsions (W/O) and the oil globule size in Water-in-oil-in-water emulsions (W/O/W). J Dispers Sci Technol. 2007;28(5):703–716. doi:10.1080/01932690701341819
  • Pinheiro M, Ribeiro R, Vieira A, Andrade F, Reis S. Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Des Devel Ther. 2016;10:2467–2475. doi:10.2147/DDDT.S104395
  • Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innovative Food Sci Emerging Technol. 2013;19:29–43. doi:10.1016/j.ifset.2013.03.002
  • Nakama KA, Dos Santos RB, Da Rosa Silva CE, et al. Establishment of analytical method for quantification of anti-inflammatory agents co-nanoencapsulated and its application to physicochemical development and characterization of lipid-core nanocapsules. Arabian J Chem. 2018. doi:10.1016/J.ARABJC.2018.05.011
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–177. doi:10.1016/S0939-6411(00)00087-410840199
  • Wadhwa J, Asthana A, Shilakari G, Chopra AK, Singh R. Development and evaluation of nanoemulsifying preconcentrate of curcumin for colon delivery. Sci World J. 2015;2015. doi:10.1155/2015/541510.
  • Shrotriya S, Ranpise N, Satpute P, Vidhate B. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artif Cells Nanomed Biotechnol. 2018;46(7):1471–1482. doi:10.1080/21691401.2017.137365928884598
  • Doktorovova S, Souto EB, Silva AM. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharm Dev Technol. 2018;23(1):96–105. doi:10.1080/10837450.2017.138449128949267
  • Payghan SA. Potential investigation of peceol for formulation of ezetimibe self nano emulsifying. Asian Journal of Biomedical and Pharmaceutical Sciences, 2016. doi:10.1177/1077800408322680
  • Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35(10):3365–3383. doi:10.1016/j.biomaterials.2013.12.09024439402
  • Lee W-H, Loo C-Y, Young PM, Traini D, Mason RS, Rohanizadeh R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv. 2014;11(8):1183–1201. doi:10.1517/17425247.2014.91668624857605
  • Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 2002;512(1–3):334–340. doi:10.1016/S0014-5793(02)02292-511852106
  • Koon H, Leung AWN, Yue KKM, Mak NK. Photodynamic effect of curcumin on NPC/CNE2 cells. J Environ Pathol Toxicol Oncol. 2006;25(1–2):205–215. doi:10.1615/JEnvironPatholToxicolOncol.v25.i1-2.12016566718
  • Ahn JC, Kang JW, Shin JI, Chung PS. Combination treatment with photodynamic therapy and curcumin induces mitochondria-dependent apoptosis in AMC-HN3 cells. Int J Oncol. 2012;41(6):2184–2190. doi:10.3892/ijo.2012.166123064512
  • Hosseinzadeh R, Khorsandi K. Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell. Photodiagnosis Photodyn Ther. 2017;18:284–294. doi:10.1016/j.pdpdt.2017.03.00528300724
  • Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6(1):12–21. doi:10.1002/smll.20090115819844908
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems - A review (Part 1). Trop J Pharm Res. 2013;12(2):255–264. doi:10.4314/tjpr.v12i2.19
  • Sachs-Barrable K, Thamboo A, Lee SD, Wasan KM. Lipid excipients peceol and gelucire 44/14 decrease P-glycoprotein mediated efflux of rhodamine 123 partially due to modifying P-glycoprotein protein expression within Caco-2 cells. J Pharm Pharm Sci. 2007;10(3):319–331. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17727795. Accessed February 18, 2019.17727795
  • Ampasavate C, Sotanaphun U, Phattanawasin P, Piyapolrungroj N. Effects of Curcuma spp. on P-glycoprotein function. Phytomedicine. 2010;17(7):506–512. doi:10.1016/j.phymed.2009.09.00419879740
  • Bogacz A, Deka-Pawlik D, Bartkowiak-Wieczorek J, et al. The effect of herbal materials on the P-glycoprotein activity and function. Herba Polonica 2013;59(4). doi:10.2478/hepo-2013-0029.
  • Mohammadzadeh R, Baradaran B, Valizadeh H, Yousefi B, Zakeri-Milani P. Reduced ABCB1 expression and activity in the presence of acrylic copolymers. Adv Pharm Bull. 2014;4(3):219–224. doi:10.5681/apb.2014.03224754004