563
Views
26
CrossRef citations to date
0
Altmetric
Review

Innovative Therapies and Nanomedicine Applications for the Treatment of Alzheimer’s Disease: A State-of-the-Art (2017–2020)

ORCID Icon, ORCID Icon & ORCID Icon
Pages 6113-6135 | Published online: 14 Aug 2020

References

  • Yiannopoulou KG, Papageorgiou SG. Current and future treatments in alzheimer disease: an update. J Cent Nerv Syst Dis. 2020;12:1179573520907397. doi:10.1177/117957352090739732165850
  • Faustino C, Rijo P, Reis CP. Nanotechnological strategies for nerve growth factor delivery: therapeutic implications in Alzheimer’s disease. Pharmacol Res. 2017;120:68–87. doi:10.1016/j.phrs.2017.03.02028351757
  • Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019;14:5541–5554. doi:10.2147/IJN.S20049031410002
  • Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology based theranostic approaches in Alzheimer’s Disease management: current status and future perspective. Curr Alzheimer Res. 2017;14(11):1164–1181. doi:10.2174/156720501466617050812103128482786
  • Martín-Rapun R, De Matteis L, Ambrosone A, Garcia-Embid S, Gutierrez L, de la Fuente JM. Targeted nanoparticles for the Treatment of Alzheimer’s Disease. Curr Pharm Des. 2017;23(13):1927–1952. doi:10.2174/138161282266616122615101128025949
  • Moreno S, Cerù MP. In search for novel strategies towards neuroprotection and neuroregeneration: is PPARα a promising therapeutic target? Neural Regen Res. 2015;10(9):1409–1412. doi:10.4103/1673-5374.16531326604898
  • Karran E, De Strooper B. The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem. 2016;139(Suppl 2):237–252. doi:10.1111/jnc.1363227255958
  • Uddin MS, Kabir MT, Niaz K, et al. Molecular Insight into the therapeutic promise of flavonoids against Alzheimer’s Disease. Molecules. 2020;25:6. doi:10.3390/molecules25061267
  • Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood-brain barrier: the role of nanomaterials in treating Neurological Diseases. Adv Mater. 2018;30(46):e1801362.30066406
  • Harilal S, Jose J, Parambi DGT, et al. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J Pharm Pharmacol. 2019;71(9):1370–1383. doi:10.1111/jphp.1313231304982
  • Kevadiya BD, Ottemann BM, Thomas MB, et al. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev. 2019;148:252–289. doi:10.1016/j.addr.2018.10.01130421721
  • Ross C, Taylor M, Fullwood N, Allsop D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine. 2018;13:8507–8522. doi:10.2147/IJN.S18311730587974
  • Wong KH, Riaz MK, Xie Y, et al. Review of current strategies for delivering Alzheimer’s Disease drugs across the blood-brain barrier. Int J Mol Sci. 2019;20:2. doi:10.3390/ijms20020381
  • Dong X. Current Strategies for Brain Drug Delivery. Theranostics. 2018;8(6):1481–1493. doi:10.7150/thno.2125429556336
  • Tosi G, Pederzoli F, Belletti D, et al. Nanomedicine in Alzheimer’s disease: amyloid beta targeting strategy. Prog Brain Res. 2019;245:57–88.30961872
  • Stanfield CL, Germann WJ. Il Sistema Nervoso; il Sistema nervoso Centrale [The Nervous System; the Central Nervous System]. In: Molinari CG, Marini HR, editors. Fisiologia Terza Edizione. [Physiology Third Edition]. Naples, Italy: EdiSES Srl; 2009:216–251. Italian.
  • Freeman T. Focused ultrasound opens the blood-brain barrier. Physics World Available from: https://physicsworld.com/a/focused-ultrasound-opens-the-blood-brain-barrier-2/. Accessed 8 4, 2020.
  • Vasile C. Chapter 1 Polymeric Nanomaterials: Recent Developments, Properties and Medical Applications in Polymeric Nanomaterials in Nanotherapeutics. Elsevier; 2019.
  • Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523–580. doi:10.1615/CritRevTherDrugCarrierSyst.v26.i6.1020402623
  • Pandey P, Dahiya M. A brief review on inorganic nanoparticles. J Critical Rev. 2016;3:18–26.
  • Anzar N, Hasan R, Tyagi M, Yadav N, Narang J. Carbon Nanotube - a Review on Synthesis, Properties and Plethora of Applications in the Field of Biomedical Science. 1 Sensors International; 2020.
  • Bhattacharya S, Prajapati B, Paul A. A conceptual review on micro bubbles. Biomed J Sci & Tech Res. 2017.
  • Le TC, Zhai J, Chiu WH, Tran PA, Tran N. Janus particles: recent advances in the biomedical applications. Int J Nanomedicine. 2019;14:6749–6777. doi:10.2147/IJN.S16903031692550
  • Praça C, Rai A, Santos T, et al. A nanoformulation for the preferential accumulation in adult neurogenic niches. J Control Release. 2018;284:57–72. doi:10.1016/j.jconrel.2018.06.01329902485
  • Agrawal M, Ajazuddin TDK, et al. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release. 2017;260:61–77. doi:10.1016/j.jconrel.2017.05.01928549949
  • Niu X, Chen J, Gao J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: focus on recent advances. Asian J Pharm Sci. 2019;14(5):480–496. doi:10.1016/j.ajps.2018.09.00532104476
  • Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm. 2020;149:192–217. doi:10.1016/j.ejpb.2020.01.00531982574
  • Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B. 2016;6(4):268–286. doi:10.1016/j.apsb.2016.05.01327471668
  • Pardridge WM. Re-engineering therapeutic antibodies for Alzheimer’s disease as blood-brain barrier penetrating bi-specific antibodies. Expert Opin Biol Ther. 2016;16(12):1455–1468. doi:10.1080/14712598.2016.123019527572805
  • Arora S, Sharma D, Singh J. GLUT-1: an effective target to deliver brain-derived neurotrophic factor gene across the blood brain barrier. ACS Chem Neurosci. 2020;11:1620–1633. doi:10.1021/acschemneuro.0c0007632352752
  • Betzer O, Shilo M, Motiei M, Popovtzer R. Insulin-Coated Gold Nanoparticles as an Effective Approach for Bypassing the Blood-Brain Barrier.Proc. SPIE 10891, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI, 108911H. 2019. doi:10.1117/12.2510353
  • Majerova P, Hanes J, Olesova D, Sinsky J, Pilipcinec E, Kovac A. Novel blood-brain barrier shuttle peptides discovered through the phage display method. Molecules. 2020;25:4. doi:10.3390/molecules25040874
  • McCully M, Sanchez-Navarro M, Teixido M, Giralt E. Peptide mediated brain delivery of nano- and submicroparticles: a synergistic approach. Curr Pharm Des. 2018;24(13):1366–1376. doi:10.2174/138161282466617120111512629205110
  • Guo Q, Xu S, Yang P, et al. A dual-ligand fusion peptide improves the brain-neuron targeting of nanocarriers in Alzheimer’s disease mice. J Control Release. 2020;320:347–362. doi:10.1016/j.jconrel.2020.01.03931978446
  • Formicola B, Cox A, Dal Magro R, Masserini M, Re F. Nanomedicine for the treatment of Alzheimer’s Disease. J Biomed Nanotechnol. 2019;15(10):1997–2024. doi:10.1166/jbn.2019.283731462368
  • Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44–52. doi:10.1016/j.lfs.2017.12.02529277310
  • Akel H, Ismail R, Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease. Eur J Pharm Biopharm. 2020;148:38–53. doi:10.1016/j.ejpb.2019.12.01431926222
  • Samaridou E, Alonso MJ. Nose-to-brain peptide delivery - The potential of nanotechnology. Bioorg Med Chem. 2018;26(10):2888–2905. doi:10.1016/j.bmc.2017.11.00129170026
  • Gao X, Wu B, Zhang Q, et al. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release. 2007;121(3):156–167. doi:10.1016/j.jconrel.2007.05.02617628165
  • Agrawal M, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, Alexander A. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018;281:139–177. doi:10.1016/j.jconrel.2018.05.01129772289
  • Nanaki SG, Spyrou K, Bekiari C, et al. Hierarchical porous carbon-PLLA and PLGA hybrid nanoparticles for intranasal delivery of galantamine for Alzheimer’s Disease therapy. Pharmaceutics. 2020;12:3. doi:10.3390/pharmaceutics12030227
  • Adnet T, Groo AC, Picard C, et al. Pharmacotechnical development of a nasal drug delivery composite nanosystem intended for Alzheimer’s Disease treatment. Pharmaceutics. 2020;12:3. doi:10.3390/pharmaceutics12030251
  • Kamei N, Takeda-Morishita M. Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides. J Control Release. 2015;197:105–110. doi:10.1016/j.jconrel.2014.11.00425445695
  • Liu Y, Gong Y, Xie W, et al. Microbubbles in combination with focused ultrasound for the delivery of quercetin-modified sulfur nanoparticles through the blood brain barrier into the brain parenchyma and relief of endoplasmic reticulum stress to treat Alzheimer’s disease. Nanoscale. 2020;12(11):6498–6511. doi:10.1039/C9NR09713A32154811
  • Chen W, Ouyang J, Yi X, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater. 2018;30:3.
  • Zhou H, Gong Y, Liu Y, et al. Intelligently thermoresponsive flower-like hollow nano-ruthenium system for sustained release of nerve growth factor to inhibit hyperphosphorylation of tau and neuronal damage for the treatment of Alzheimer’s disease. Biomaterials. 2020;237:119822. doi:10.1016/j.biomaterials.2020.11982232035322
  • Liu W, Wang W, Dong X, Sun Y. Near-infrared light-powered janus nanomotor significantly facilitates inhibition of amyloid-β fibrillogenesis. ACS Appl Mater Interfaces. 2020;12(11):12618–12628. doi:10.1021/acsami.0c0234232105446
  • Carradori D, Balducci C, Re F, et al. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine. 2018;14(2):609–618. doi:10.1016/j.nano.2017.12.00629248676
  • Luo Q, Lin YX, Yang PP, et al. A self-destructive nanosweeper that captures and clears amyloid β-peptides. Nat Commun. 2018;9(1):1802. doi:10.1038/s41467-018-04255-z29728565
  • Zhang W, Christofferson AJ, Besford QA, et al. Metal-dependent inhibition of amyloid fibril formation: synergistic effects of cobalt-tannic acid networks. Nanoscale. 2019;11(4):1921–1928. doi:10.1039/C8NR09221D30644497
  • Sun J, Xie W, Zhu X, Xu M, Liu J. Sulfur nanoparticles with novel morphologies coupled with brain-targeting peptides RVG as a new type of inhibitor against metal-induced aβ aggregation. ACS Chem Neurosci. 2018;9(4):749–761. doi:10.1021/acschemneuro.7b0031229192759
  • Chung YJ, Lee BI, Park CB. Multifunctional carbon dots as a therapeutic nanoagent for modulating Cu(ii)-mediated β-amyloid aggregation. Nanoscale. 2019;11(13):6297–6306. doi:10.1039/C9NR00473D30882825
  • Liu H, Dong X, Liu F, Zheng J, Sun Y. Iminodiacetic acid-conjugated nanoparticles as a bifunctional modulator against Zn. J Colloid Interface Sci. 2017;505:973–982. doi:10.1016/j.jcis.2017.06.09328693098
  • Sun D, Zhang W, Yu Q, et al. Chiral penicillamine-modified selenium nanoparticles enantioselectively inhibit metal-induced amyloid β aggregation for treating Alzheimer’s disease. J Colloid Interface Sci. 2017;505:1001–1010. doi:10.1016/j.jcis.2017.06.08328693096
  • Zhang X, Zhong M, Zhao P, et al. Screening a specific Zn(ii)-binding peptide for improving the cognitive decline of Alzheimer’s disease in APP/PS1 transgenic mice by inhibiting Zn. Biomater Sci. 2019;7(12):5197–5210. doi:10.1039/C9BM00676A31588929
  • Han Q, Wang X, Liu X, et al. MoO3-X nanodots with dual enzyme mimic activities as multifunctional modulators for amyloid assembly and neurotoxicity. J Colloid Interface Sci. 2019;539:575–584. doi:10.1016/j.jcis.2018.12.09330611053
  • Zhang Z, Wang J, Song Y, Wang Z, Dong M, Liu L. Disassembly of Alzheimer’s amyloid fibrils by functional upconversion nanoparticles under near-infrared light irradiation. Colloids Surf B Biointerfaces. 2019;181:341–348. doi:10.1016/j.colsurfb.2019.05.05331158696
  • Pederzoli F, Ruozi B, Duskey J, et al. Nanomedicine against Aβ aggregation by β-sheet breaker peptide delivery: in vitro evidence. Pharmaceutics. 2019;11:11. doi:10.3390/pharmaceutics11110572
  • Zhang H, Hao C, Qu A, et al. Light-induced chiral iron copper selenide nanoparticles prevent β-Amyloidopathy in vivo. Angew Chem Int Ed Engl. 2020.
  • Boonruamkaew P, Chonpathompikunlert P, Vong LB, et al. Chronic treatment with a smart antioxidative nanoparticle for inhibition of amyloid plaque propagation in Tg2576 mouse model of Alzheimer’s disease. Sci Rep. 2017;7(1):3785. doi:10.1038/s41598-017-03411-728630497
  • Jeon SG, Cha MY, Kim JI, et al. Vitamin D-binding protein-loaded PLGA nanoparticles suppress Alzheimer’s disease-related pathology in 5XFAD mice. Nanomedicine. 2019;17:297–307. doi:10.1016/j.nano.2019.02.00430794963
  • Vakilinezhad MA, Amini A, Akbari Javar H, Baha’addini Beigi Zarandi BF, Montaseri H, Dinarvand R. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru. 2018;26(2):165–177. doi:10.1007/s40199-018-0221-530386982
  • Sonawane SK, Ahmad A, Chinnathambi S. Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s Disease. ACS Omega. 2019;4(7):12833–12840. doi:10.1021/acsomega.9b0141131460408
  • Cai X, Zhang K, Xie X, et al. Self-assembly hollow manganese Prussian white nanocapsules attenuate Tau-related neuropathology and cognitive decline. Biomaterials. 2020;231:119678. doi:10.1016/j.biomaterials.2019.11967831864019
  • Ji D, Wu X, Li D, et al. Protective effects of chondroitin sulphate nano-selenium on a mouse model of Alzheimer’s disease. Int J Biol Macromol. 2020;154:233–245. doi:10.1016/j.ijbiomac.2020.03.07932171837
  • Gao F, Zhao J, Liu P, et al. Preparation and in vitro evaluation of multi-target-directed selenium-chondroitin sulfate nanoparticles in protecting against the Alzheimer’s disease. Int J Biol Macromol. 2020;142:265–276. doi:10.1016/j.ijbiomac.2019.09.09831593732
  • Sierra C. Hypertension and the Risk of Dementia. Front Cardiovasc Med. 2020;7:5. doi:10.3389/fcvm.2020.0000532083095
  • Wahidi N, Lerner AJ. Blood pressure control and protection of the aging Brain. Neurotherapeutics. 2019;16(3):569–579. doi:10.1007/s13311-019-00747-y31161491
  • Novotny M, Klimova B, Valis M. Nitrendipine and dementia: forgotten positive facts? Front Aging Neurosci. 2018;10:418. doi:10.3389/fnagi.2018.0041830618724
  • Nimmrich V, Eckert A. Calcium channel blockers and dementia. Br J Pharmacol. 2013;169(6):1203–1210. doi:10.1111/bph.1224023638877
  • Alawdi SH, Eidi H, Safar MM, Abdel-Wahhab MA. Loading amlodipine on diamond nanoparticles: a novel drug delivery system. Nanotechnol Sci Appl. 2019;12:47–53. doi:10.2147/NSA.S23251732099339
  • Li T, Liang W, Xiao X, Qian Y. Nanotechnology, an alternative with promising prospects and advantages for the treatment of cardiovascular diseases. Int J Nanomedicine. 2018;13:7349–7362. doi:10.2147/IJN.S17967830519019
  • Evans CW, Viola HM, Ho D, et al. Nanoparticle-mediated internalisation and release of a calcium channel blocker. RSC Adv. 2012;2(23):8587–8590. doi:10.1039/c2ra21058d
  • Jana U, Mohanty AK, Pal SL, Manna PK, Mohanta GP. Felodipine loaded PLGA nanoparticles: preparation, physicochemical characterization and in vivo toxicity study. Nano Convergence. 2014;1(1):31. doi:10.1186/s40580-014-0031-5
  • Jana U, Mohanty AK, Manna PK, Mohanta GP. Preparation and characterization of nebivolol nanoparticles using Eudragit® RS100. Colloids Surf B Biointerfaces. 2014;113:269–275. doi:10.1016/j.colsurfb.2013.09.00124140793
  • Tóth OM, Menyhárt Á, Varga V, et al. Chitosan nanoparticles release nimodipine in response to tissue acidosis to attenuate spreading depolarization evoked during forebrain ischemia. Neuropharmacology. 2020;162:107850. doi:10.1016/j.neuropharm.2019.10785031715193
  • Wójtowicz S, Strosznajder AK, Jeżyna M, Strosznajder JB. The novel role of PPAR alpha in the brain: promising target in therapy of Alzheimer’s Disease and other neurodegenerative disorders. Neurochem Res. 2020;45:972–988. doi:10.1007/s11064-020-02993-532170673
  • Silva-Abreu M, Calpena AC, Andrés-Benito P, et al. PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer’s disease: in vitro and in vivo studies. Int J Nanomedicine. 2018;13:5577–5590. doi:10.2147/IJN.S17149030271148
  • Xiao Y, Zhang E, Fu A. Promotion of SH-SY5Y cell growth by gold nanoparticles modified with 6-mercaptopurine and a neuron-penetrating peptide. Nanoscale Res Lett. 2017;12(1):641. doi:10.1186/s11671-017-2417-x29288282
  • Marcus M, Smith A, Maswadeh A, et al. Magnetic targeting of growth factors using iron oxide nanoparticles. Nanomaterials. 2018;8:9. doi:10.3390/nano8090707
  • Yuan M, Wang Y, Qin YX. Engineered nanomedicine for neuroregeneration: light emitting diode-mediated superparamagnetic iron oxide-gold core-shell nanoparticles functionalized by nerve growth factor. Nanomedicine. 2019;21:102052. doi:10.1016/j.nano.2019.10205231349088
  • Yuan M, Wang Y, Qin YX. Promoting neuroregeneration by applying dynamic magnetic fields to a novel nanomedicine: superparamagnetic iron oxide (SPIO)-gold nanoparticles bounded with nerve growth factor (NGF). Nanomedicine. 2018;14(4):1337–1347. doi:10.1016/j.nano.2018.03.00429627520
  • Katebi S, Esmaeili A, Ghaedi K, Zarrabi A. Superparamagnetic iron oxide nanoparticles combined with NGF and quercetin promote neuronal branching morphogenesis of PC12 cells. Int J Nanomedicine. 2019;14:2157–2169. doi:10.2147/IJN.S19187830992663
  • Kalra EK. Nutraceutical–definition and introduction. AAPS PharmSci. 2003;5(3):E25. doi:10.1208/ps05032514621960
  • Kanubaddi KR, Yang SH, Wu LW, Lee CH, Weng CF. Nanoparticle-conjugated nutraceuticals exert prospectively palliative of amyloid aggregation. Int J Nanomedicine. 2018;13:8473–8485. doi:10.2147/IJN.S17948430587972
  • Pinheiro RGR, Granja A, Loureiro JA, et al. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur J Pharm Sci. 2020;148:105314. doi:10.1016/j.ejps.2020.10531432200044
  • Sun D, Li N, Zhang W, et al. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf B Biointerfaces. 2016;148:116–129. doi:10.1016/j.colsurfb.2016.08.05227591943
  • Amin FU, Shah SA, Badshah H, Khan M, Kim MO. Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ. J Nanobiotechnol. 2017;15(1):12. doi:10.1186/s12951-016-0227-4
  • Ishak RAH, Mostafa NM, Kamel AO. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution. Drug Deliv. 2017;24(1):1874–1890. doi:10.1080/10717544.2017.141026329191047
  • Ali T, Kim MJ, Rehman SU, Ahmad A, Kim MO. Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ. Mol Neurobiol. 2017;54(8):6490–6506. doi:10.1007/s12035-016-0136-427730512
  • Kim MJ, Rehman SU, Amin FU, Kim MO. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ. Nanomedicine. 2017;13(8):2533–2544. doi:10.1016/j.nano.2017.06.02228736294
  • Kheradmand E, Hajizadeh Moghaddam A, Zare M. Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer’s disease. Biomed Pharmacother. 2018;97:1096–1101. doi:10.1016/j.biopha.2017.11.04729136946
  • Wijiani N, Isadiartuti D, Rijal MAS, Yusuf H. Characterization and dissolution study of micellar curcumin-spray dried powder for oral delivery. Int J Nanomedicine. 2020;15:1787–1796. doi:10.2147/IJN.S24505032214811
  • Chen S, Han Y, Sun C, et al. Effect of molecular weight of hyaluronan on zein-based nanoparticles: fabrication, structural characterization and delivery of curcumin. Carbohydr Polym. 2018;201:599–607. doi:10.1016/j.carbpol.2018.08.11630241858
  • Lohan S, Raza K, Mehta SK, Bhatti GK, Saini S, Singh B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int J Pharm. 2017;530(12):263–278. doi:10.1016/j.ijpharm.2017.07.08028774853
  • Sathya S, Shanmuganathan B, Devi KP. Deciphering the anti-apoptotic potential of α-bisabolol loaded solid lipid nanoparticles against Aβ induced neurotoxicity in Neuro-2a cells. Colloids Surf B Biointerfaces. 2020;190:110948. doi:10.1016/j.colsurfb.2020.11094832160583
  • Brenza TM, Ghaisas S, Ramirez JEV, et al. Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. Nanomedicine. 2017;13(3):809–820. doi:10.1016/j.nano.2016.10.00427771430
  • Aalinkeel R, Kutscher HL, Singh A, et al. Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: a potential nanotherapy for Alzheimer’s disease? J Drug Target. 2018;26(2):182–193. doi:10.1080/1061186X.2017.135400228697660
  • Sathya S, Shanmuganathan B, Saranya S, Vaidevi S, Ruckmani K, Pandima Devi K. Phytol-loaded PLGA nanoparticle as a modulator of Alzheimer’s toxic Aβ peptide aggregation and fibrillation associated with impaired neuronal cell function.. Artif Cells Nanomed Biotechnol. 2018;46(8):1719–1730. doi:10.1080/21691401.2017.139182229069924
  • Cano A, Ettcheto M, Chang JH, et al. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J Control Release. 2019;301:62–75. doi:10.1016/j.jconrel.2019.03.01030876953
  • Xu R, Wang J, Xu J, et al. Rhynchophylline Loaded-mPEG-PLGA nanoparticles coated with tween-80 for preliminary study in Alzheimer’s Disease. Int J Nanomedicine. 2020;15:1149–1160. doi:10.2147/IJN.S23692232110013
  • Chen S, Han Y, Huang J, et al. Fabrication and characterization of layer-by-layer composite nanoparticles based on zein and hyaluronic acid for codelivery of Curcumin and Quercetagetin. ACS Appl Mater Interfaces. 2019;11(18):16922–16933. doi:10.1021/acsami.9b0252930985111
  • Okuda M, Fujita Y, Sugimoto H. The additive effects of low dose intake of ferulic acid, phosphatidylserine and curcumin, not alone, improve cognitive function in APPswe/PS1dE9 transgenic mice. Biol Pharm Bull. 2019;42(10):1694–1706. doi:10.1248/bpb.b19-0033231582657
  • Agarwal H, Shanmugam V. A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: mechanism-based approach. Bioorg Chem. 2020;94:103423. doi:10.1016/j.bioorg.2019.10342331776035
  • Badeggi UM, Ismail E, Adeloye AO, et al. Green synthesis of gold nanoparticles capped with procyanidins from. Biomolecules. 2020;10:3. doi:10.3390/biom10030452
  • Lee YJ, Park Y. Green synthetic nanoarchitectonics of gold and silver nanoparticles prepared using quercetin and their cytotoxicity and catalytic applications. J Nanosci Nanotechnol. 2020;20(5):2781–2790. doi:10.1166/jnn.2020.1745331635614
  • Youssif KA, Haggag EG, Elshamy AM, et al. Anti-Alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts. PLoS One. 2019;14(11):e0223781. doi:10.1371/journal.pone.022378131693694
  • Dos Santos Rodrigues B, Kanekiyo T, Singh J. ApoE-2 brain-targeted gene therapy through transferrin and penetratin tagged liposomal nanoparticles. Pharm Res. 2019;36(11):161. doi:10.1007/s11095-019-2691-731529284
  • Rassu G, Soddu E, Posadino AM, et al. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf B Biointerfaces. 2017;152:296–301. doi:10.1016/j.colsurfb.2017.01.03128126681
  • Wang P, Zheng X, Guo Q, et al. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer’s disease. J Control Release. 2018;279:220–233. doi:10.1016/j.jconrel.2018.04.03429679667
  • Poplawski SG, Garbett KA, McMahan RL, et al. An antisense oligonucleotide leads to suppressed transcription of hdac2 and long-term memory enhancement. Mol Ther Nucleic Acids. 2020;19:1399–1412. doi:10.1016/j.omtn.2020.01.02732160709
  • Shao X, Cui W, Xie X, Ma W, Zhan Y, Lin Y. Treatment of Alzheimer’s disease with framework nucleic acids. Cell Prolif. 2020;e12787.32162733
  • Zhang FQ, Jiang JL, Zhang JT, Niu H, Fu XQ, Zeng LL. Current status and future prospects of stem cell therapy in Alzheimer’s disease. Neural Regen Res. 2020;15(2):242–250. doi:10.4103/1673-5374.26554431552889
  • Reddy AP, Ravichandran J, Carkaci-Salli N. Neural regeneration therapies for Alzheimer’s and Parkinson’s disease-related disorders. Biochim Biophys Acta Mol Basis Dis. 2020;1866(4):165506. doi:10.1016/j.bbadis.2019.06.02031276770
  • Zhang L, Dong ZF, Zhang JY. Immunomodulatory role of mesenchymal stem cells in Alzheimer’s disease. Life Sci. 2020;246:117405. doi:10.1016/j.lfs.2020.11740532035129
  • Hour FQ, Moghadam AJ, Shakeri-Zadeh A, Bakhtiyari M, Shabani R, Mehdizadeh M. Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton’s jelly in Alzheimer’s rat models. J Control Release. 2020;321:430–441. doi:10.1016/j.jconrel.2020.02.03532097673
  • Sato M, Takizawa H, Nakamura A, Turner BJ, Shabanpoor F, Aoki Y. Application of urine-derived stem cells to cellular modeling in neuromuscular and neurodegenerative diseases. Front Mol Neurosci. 2019;12:297. doi:10.3389/fnmol.2019.0029731920531
  • Mungenast AE, Siegert S, Tsai LH. Modeling Alzheimer’s disease with human induced pluripotent stem (iPS) cells. Mol Cell Neurosci. 2016;73:13–31. doi:10.1016/j.mcn.2015.11.01026657644
  • Chang KH, Lee-Chen GJ, Huang CC, et al. Modeling Alzheimer’s Disease by induced pluripotent stem cells carrying APP D678H mutation. Mol Neurobiol. 2019;56(6):3972–3983. doi:10.1007/s12035-018-1336-x30238389
  • Zhang X, Hu D, Shang Y, Qi X. Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis. 2020;1866(4):165431. doi:10.1016/j.bbadis.2019.03.00430898538
  • Hossini AM, Megges M, Prigione A, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer’s disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84. doi:10.1186/s12864-015-1262-525765079
  • Pavoni S, Jarray R, Nassor F, et al. Small-molecule induction of Aβ-42 peptide production in human cerebral organoids to model Alzheimer’s disease associated phenotypes. PLoS One. 2018;13(12):e0209150. doi:10.1371/journal.pone.020915030557391
  • Raja WK, Mungenast AE, Lin YT, et al. Self-Organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s Disease phenotypes. PLoS One. 2016;11(9):e0161969. doi:10.1371/journal.pone.016196927622770
  • Nassor F, Jarray R, Biard DSF, et al. Long term gene expression in human induced pluripotent stem cells and cerebral organoids to model a Neurodegenerative Disease. Front Cell Neurosci. 2020;14:14. doi:10.3389/fncel.2020.0001432116560
  • Aulić S, Bolognesi ML, Legname G. Small-molecule theranostic probes: a promising future in neurodegenerative diseases. Int J Cell Biol. 2013;2013:150952. doi:10.1155/2013/15095224324497
  • Chakravarthy M, Chen S, Dodd PR, Veedu RN. Nucleic acid-based theranostics for tackling Alzheimer’s Disease. Theranostics. 2017;7(16):3933–3947. doi:10.7150/thno.2152929109789
  • Papadia K, Markoutsa E, Mourtas S, et al. Multifunctional LUV liposomes decorated for BBB and amyloid targeting. A. In vitro proof-of-concept. Eur J Pharm Sci. 2017;101:140–148. doi:10.1016/j.ejps.2017.02.01928193538
  • Mourtas S, Christodoulou P, Klepetsanis P, Gatos D, Barlos K, Antimisiaris SG. Preparation of Benzothiazolyl-Decorated Nanoliposomes. Molecules. 2019;24:8. doi:10.3390/molecules24081540
  • Caldorera-Moore M, Guimard N, Shi L, Roy K. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv. 2010;7(4):479–495. doi:10.1517/1742524090357997120331355
  • Dal Magro R, Simonelli S, Cox A, et al. The extent of human apolipoprotein a-i lipidation strongly affects the β-amyloid efflux across the blood-brain barrier. Front Neurosci. 2019;13:419. doi:10.3389/fnins.2019.0041931156358
  • Binda A, Panariti A, Barbuti A, et al. Modulation of the intrinsic neuronal excitability by multifunctional liposomes tailored for the treatment of Alzheimer’s disease. Int J Nanomedicine. 2018;13:4059–4071. doi:10.2147/IJN.S16156330034232
  • Rodriguez Then FS, Jackson J, Ware C, Churchyard R, Hanseeuw B. Interdisciplinary and transdisciplinary perspectives: on the road to a holistic approach to dementia prevention and care. J Alzheimers Dis Rep. 2020;4(1):39–48. doi:10.3233/ADR-18007032206756