835
Views
20
CrossRef citations to date
0
Altmetric
Review

Recent Progress and Future Directions: The Nano-Drug Delivery System for the Treatment of Vitiligo

, , &
Pages 3267-3279 | Published online: 08 May 2020

References

  • Ezzedine K, Lim HW, Suzuki T, et al. Revised classification/nomenclature of vitiligo and related issues: the vitiligo global issues consensus conference. Pigm Cell Res. 2012;25(3):E1–E13. doi:10.1111/j.1755-148X.2012.00997.x
  • Sehgal VN, Srivastava G. Vitiligo: compendium of clinico-epidemiological features. Leprology. 2007;73(3):149.
  • Alikhan A, Felsten LM, Daly M, et al. Vitiligo: a comprehensive overview: part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J Am Acad Dermatol. 2011;65(3):473–491. doi:10.1016/j.jaad.2010.11.06121839315
  • Asem A, Fain PR, Anthony T, et al. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigm Cell Res. 2010;16(3):208–214.
  • Zhang Z, Xu SX, Zhang FY, et al. The analysis of genetics and associated autoimmune diseases in Chinese vitiligo patients. Arch Dermatol Res. 2009;301(2):167–173. doi:10.1007/s00403-008-0900-z18839195
  • Lerner AB. Part V: clinical applications of psoralens, and related materials: vitiligo. J Invest Dermatol. 1959;32(2):285–310. doi:10.1038/jid.1959.4913641799
  • Mohammed GF. Highlights in pathogenesis of vitiligo. World J Clin Cases. 2015;3(3):221. doi:10.12998/wjcc.v3.i3.22125789295
  • Ying J, Mailloux CM, Katherine G, et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 2007;356(12):1216–1225. doi:10.1056/NEJMoa06159217377159
  • Spritz RA. The Genetics of Vitiligo. J Invest Dermatol. 2011;131(E1):E18–E20. doi:10.1038/skinbio.2011.722094401
  • Zhu KJ, Lv YM, Yin XY, et al. Psoriasis regression analysis of MHC loci identifies shared genetic variants with vitiligo. PLoS One. 2011;6(11):e23089–e23089. doi:10.1371/journal.pone.002308922125590
  • Wang X, Erf GF. Melanocyte-specific cell mediated immune response in vitiliginous Smyth line chickens. J Autoimmun. 2003;21(2):149–160. doi:10.1016/S0896-8411(03)00087-812935784
  • Slominski A, Paus R, Bomirski A. Hypothesis: possible role for the melatonin receptor in vitiligo: discussion paper. J R Soc Med. 1989;82(9):539–541. doi:10.1177/0141076889082009112552111
  • Ezzedine K, Eleftheriadou V, Whitton M, et al. Vitiligo. Lancet. 2015;386(9988):74–84. doi:10.1016/S0140-6736(14)60763-725596811
  • Rashighi M, Agarwal P, Richmond JM, et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 2014;6(223):223ra23. doi:10.1126/scitranslmed.3007811
  • Harris JE, Harris TH, Weninger W, et al. A Mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin. J Invest Dermatol. 2012;132(7):1869–1876. doi:10.1038/jid.2011.46322297636
  • Gregg RK, Nichols L, Chen Y, et al. Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice. J Immuno. 2010;184(4):1909–1917. doi:10.4049/jimmunol.0902778
  • Bertolotti A, Boniface K, Vergier B, et al. Type I interferon signature in the initiation of the immune response in vitiligo. Pigment Cell Melanoma Res. 2014;27(3):398–407. doi:10.1111/pcmr.1221924438589
  • Wang X, Wang Q, Wu J, et al. Increased expression of CXCR3 and its ligands in vitiligo patients and CXCL10 as a potential clinical marker for vitiligo. Br J Dermatol. 2016;84(1):e101–e101.
  • Bassiouny DA, Shaker O. Role of interleukin‐17 in the pathogenesis of vitiligo. Clin Exp Dermatol. 2011;36(3):292–297. doi:10.1111/j.1365-2230.2010.03972.x21198791
  • Wang CQF, Cruzinigo AE, Fuentesduculan J, et al. Th17 cells and activated dendritic cells are increased in vitiligo lesions. PLoS One. 2011;6(4):e18907–e18907. doi:10.1371/journal.pone.001890721541348
  • Elela MA, Hegazy RA, Fawzy MM, et al. Interleukin 17, interleukin 22 and FoxP3 expression in tissue and serum of non-segmental vitiligo: a case- controlled study on eighty-four patients. Eur J Dermatol. 2013;23(3):350–355. doi:10.1684/ejd.2013.202323797460
  • Méry‐Bossard L, Bagny K, Chaby G, et al. New‐onset vitiligo and progression of pre‐existing vitiligo during treatment with biological agents in chronic inflammatory diseases. J Eur Acad Dermatol Venereol. 2016;31(1):181–186. doi:10.1111/jdv.1375927291924
  • Toosi S, Orlow SJ, Manga P. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8. J Invest Dermatol. 2012;132(11):2601–2609. doi:10.1038/jid.2012.18122696056
  • Schallreuter KU, Moore J, Wood JM, et al. In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Invest Dermatol. 1999;4(1):91. doi:10.1038/sj.jidsp.5640189
  • Speeckaert R, Geel N. Vitiligo: an update on pathophysiology and treatment options. Am J Clin Dermatol. 2017;18(6):1–12.27988837
  • Laddha NC, Mitesh D, Mohmmad Shoab M, et al. Role of oxidative stress and autoimmunity in onset and progression of vitiligo. Exp Dermatol. 2014;23(5):352–353. doi:10.1111/exd.1237224628992
  • Mosenson JA, Zloza A, Nieland JD, et al. Mutant HSP70 reverses autoimmune depigmentation in vitiligo. Sci Transl Med. 2013;5(174):ra28. doi:10.1126/scitranslmed.3005127
  • Kroll TM, Bommiasamy H, Boissy RE, et al. 4-tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol. 2005;124(4):798. doi:10.1111/j.0022-202X.2005.23653.x15816839
  • Denman CJ, Mccracken J, Hariharan V, et al. HSP70i accelerates depigmentation in a mouse model of autoimmune vitiligo. J Invest Dermatol. 2008;128(8):2041–2048. doi:10.1038/jid.2008.4518337834
  • Harris JE. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo. Immunol Rev. 2016;269(1):11–25. doi:10.1111/imr.1236926683142
  • Van GN, Desmedt V, De SS, et al. Cessation of spread as a treatment objective in vitiligo: perception from the patients‘ point of view. Br J Dermatol. 2016;174(4):922. doi:10.1111/bjd.1428326556484
  • Daniel BS, Wittal R. Vitiligo treatment update. Br J Dermatol. 2015;56(2):85–92.
  • Westerhof W, Nieuweboer-Krobotova L, Mulder PG, et al. Left-right comparison study of the combination of fluticasone propionate and UV-A vs. either fluticasone propionate or UV-A alone for the long-term treatment of vitiligo. Arch Dermatol. 1999;135(9):1061. doi:10.1001/archderm.135.9.106110490110
  • Boone B, Ongenae K, Van GN, et al. Topical pimecrolimus in the treatment of vitiligo. Eur J Dermatol. 2007;17(1):55. doi:10.1684/ejd.2007.009317324829
  • Taieb A, Alomar A, BHm M, et al. Guidelines for the management of vitiligo: the European dermatology forum consensus. Br J of Dermatol. 2013;168(1):5–19. doi:10.1111/j.1365-2133.2012.11197.x22860621
  • Veronica L, Benjamin M, Juan Pablo CC, et al. A double-blind randomized trial of 0.1% tacrolimus vs 0.05% clobetasol for the treatment of childhood vitiligo. Arch Dermatol. 2003;139(5):581. doi:10.1001/archderm.139.3.36912756094
  • Iraj E, Ali E, Saeedeh F, et al. The efficacy of pimecrolimus 1% cream plus narrow-band ultraviolet B in the treatment of vitiligo: a double-blind, placebo-controlled clinical trial. J Dermatolog Treat. 2009;20(1):14–18. doi:10.1080/09546630802155057 18608735
  • Khan R, Satyam A, Gupta S, et al. Circulatory levels of antioxidants and lipid peroxidation in Indian patients with generalized and localized vitiligo. Arch Dermatol Res. 2009;301(10):731–737. doi:10.1007/s00403-009-0964-419488773
  • Colucci R, Dragoni F, Conti R, et al. Evaluation of an oral supplement containing Phyllanthus emblica fruit extracts, vitamin E, and carotenoids in vitiligo treatment. Dermatol Ther. 2015;28(1):17–21. doi:10.1111/dth.1217225285994
  • Middelkamp‐Hup MA, Bos JD, Rius‐Diaz F, et al. Treatment of vitiligo vulgaris with narrow‐band UVB and oral Polypodium leucotomos extract: a randomized double‐blind placebo‐controlled study. J Eur Acad Dermatol Venereol. 2007;21(7). doi:10.1111/j.1468-3083.2006.02132.x.
  • Parsad D, Kanwar A. Oral minocycline in the treatment of vitiligo – A preliminary study. Dermatol Ther. 2010;23(3):305–307. doi:10.1111/j.1529-8019.2010.01328.x20597950
  • Sunil D, Bhushan K. Repigmentation in vitiligo universalis: role of melanocyte density, disease duration, and melanocytic reservoir. Dermatol Online. 2005;11(3):30.
  • Kathuria S, Khaitan BK, Ramam M, Sharma V. Segmental vitiligo: a randomized controlled trial to evaluate efficacy and safety of 0.1% tacrolimus ointment vs 0.05% fluticasone propionate cream. Indian J Dermatol Venereol Leprol. 2011;78(1):68.
  • Grimes PE, Morris R, Avaniss-Aghajani E, et al. Topical tacrolimus therapy for vitiligo: therapeutic responses and skin messenger RNA expression of proinflammatory cytokines. J Am Acad Dermatol. 2004;51(1):52–61. doi:10.1016/j.jaad.2003.12.03115243524
  • Lo YH, Cheng GS, Huang CC, et al. Efficacy and safety of topical tacrolimus for the treatment of face and neck vitiligo. J Dermatol. 2010;37(2):125–129. doi:10.1111/j.1346-8138.2009.00774.x20175845
  • Nicolaidou E, Antoniou C, Stratigos AJ, et al. Efficacy, predictors of response, and long-term follow-up in patients with vitiligo treated with narrowband UVB phototherapy. J Am Acad Dermatol. 2007;56(2):0–278. doi:10.1016/j.jaad.2006.09.004
  • Sitek JC, Loeb M, Ronnevig JR. Narrowband UVB therapy for vitiligo: does the repigmentation last? J Eur Acad Dermatol Venereol. 2007;21(7):891–896. doi:10.1111/j.1468-3083.2007.01980.x17658996
  • Roelandts. Photo(chemo) therapy for vitiligo. Photomedicine. 2010;19(1):1–4.
  • Ghafourian A, Ghafourian S, Sadeghifard N, et al. Vitiligo: symptoms, pathogenesis and treatment. Int J Immunopathol Pharmacol. 2014;27(4):485–489. doi:10.1177/03946320140270040325572727
  • Palmer BC, Delouise L. Nanoparticle enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules. 2016;21(12):1719. doi:10.3390/molecules21121719
  • Marwah H, Garg T, Goyal AK. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv. 2014;23(2):564. doi:10.3109/10717544.2014.93553225006687
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–1268. doi:10.1038/nbt.150418997767
  • Stinchcomb AL. Editors. Transdermal drug delivery 2nd Edition, revised and expanded (2003) Marcel Dekker,New York 383 pp. J Controlled Release. 2005;104(1):234–235. doi:10.1016/j.jconrel.2004.09.032
  • Watkinson AC. Transdermal and Topical Drug Delivery Today. Wiley; 2012.
  • Prausnitz MR, Samir M, Robert L. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115. doi:10.1038/nrd130415040576
  • Wester RC, Maibach H. In vivo methods for percutaneous absorption measurements. J Toxicol Cutaneous Ocul Toxicol. 2001;20(4):411–422.
  • Garg B, Saraswat A, Bhatia A, Katare O. Leprology. Topical treatment in vitiligo and the potential uses of new drug delivery systems. Indian J Dermatol Venereol Leprol. 2010;76(3):231. doi:10.4103/0378-6323.6296120445292
  • Franzé S, Donadoni G, Podestà A, et al. Tuning the extent and depth of penetration of flexible liposomes in human skin. Mol Pharm. 2017;14(6):1998. doi:10.1021/acs.molpharmaceut.7b0009928409629
  • Sinico C, Valenti D, Manconi M, et al. Cutaneous delivery of 8-methoxypsoralen from liposomal and niosomal carriers. J Drug Deliv Sci Technol. 2006;16(2):115–120. doi:10.1016/S1773-2247(06)50017-6
  • Mir-Palomo S, Nácher A, Busó OV, et al. Baicalin and berberine ultradeformable vesicles as potential adjuvant in vitiligo therapy. Colloids Surf B Biointerfaces. 2019;175:654–662.30590326
  • Doppalapudi S, Mahira S, Khan W. Development and in vitro assessment of psoralen and resveratrol co-loaded ultradeformable liposomes for the treatment of vitiligo. J Photochem Photobiol B. 2017;174:44–57. doi:10.1016/j.jphotobiol.2017.07.00728753523
  • Jiradej M, Narinthorn K, Friedrich GT, et al. Potent melanin production enhancement of human tyrosinase gene by Tat and an entrapment in elastic cationic niosomes: potential application in vitiligo gene therapy. Chem Biol Drug Des. 2015;80(6):953–960.
  • Jiradej M, Narinthorn K, Worapaka M, et al. Enhancement of transdermal absorption, gene expression and stability of tyrosinase plasmid (pMEL34)-loaded elastic cationic niosomes: potential application in vitiligo treatment. J Pharm Sci. 2010;99(8):3533–3541. doi:10.1002/jps.2210420213835
  • Patel HK, Barot BS, Parejiya PB, et al. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo – part II: rheological characterization and in vivo assessment through dermatopharmacokinetic and pilot clinical studies. Colloids Surf B Biointerfaces. 2014;119(1):145–153.24767976
  • Patel HK, Barot BS, Parejiya P. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: ex vivo permeation and skin irritation studies. Colloids Surf B Biointerfaces. 2013;102(102):86–94. doi:10.1016/j.colsurfb.2012.08.01123000677
  • Garg BJ, Garg NK, Beg S, Singh B, Katare OP. Nanosized ethosomes-based hydrogel formulations of methoxsalen for enhanced topical delivery against vitiligo: formulation optimization, in vitro evaluation and preclinical assessment. J Drug Target. 2016;24(3):233–246. doi:10.3109/1061186X.2015.107085526267289
  • Tsuji G, Hashimoto-Hachiya A, Takemura M, et al. Palladium and platinum nanoparticles activate AHR and NRF2 in human keratinocytes-implications in vitiligo therapy. J Invest Dermatol. 2017;137(5):S0022202X17312198. doi:10.1016/j.jid.2017.02.981
  • Huang Y, Li Y, Hu Z, et al. Mimicking melanosomes: polydopamine nanoparticles as artificial microparasols. ACS Cent Sci. 2017;3(6):564–569. doi:10.1021/acscentsci.6b0023028691067
  • Wang W, Lu KJ, Yu CH, et al. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnology. 2019;17(1):82. doi:10.1186/s12951-019-0514-y31291960
  • Bouwstra JA, Hofland HEJ, Spies F, et al. Changes in the structure of the human stratum corneum induced by liposomes In Braun-Falco O, Korting HC, Maibach HI, editors. Liposome Dermatics. Griesbach Conference. Berlin, Heidelberg: Springer; 1992.
  • Zhong-Kai C, Anne B, Nicolas C, et al. Formation of pH-sensitive cationic liposomes from a binary mixture of monoalkylated primary amine and cholesterol. Langmuir. 2012;28(38):13668–13674. doi:10.1021/la302278q22931455
  • Pathak MA, Fitzpatrick T. The evolution of photochemotherapy with psoralens and UVA (PUVA): 2000 BC to 1992 AD. J Photochem Photobiol B. 1992;14(1–2):3–22. doi:10.1016/1011-1344(92)85080-E1432383
  • Wu X, Hu X, Hamblin M. Ultraviolet blood irradiation: is it time to remember “the cure that time forgot”? J Photochem Photobiol B. 2016;157:89–96. doi:10.1016/j.jphotobiol.2016.02.00726894849
  • El Maghraby GM, Williams AC, Barry BW. Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm. 2000;196(1):63–74. doi:10.1016/S0378-5173(99)00441-X10675708
  • Vidolin AP, Aurizi C, Leone G. Phototherapy for vitiligo, what’s new? G Ital Dermatol Venereol. 2017;152(5):474–488. doi:10.23736/S0392-0488.17.05721-228906087
  • Mir-Palomo S, Nácher A, Díez-Sales O, et al. Inhibition of skin inflammation by baicalin ultradeformable vesicles. Int J Pharm. 2016;511(1):23–29. doi:10.1016/j.ijpharm.2016.06.13627374324
  • Manconi M, Manca ML, Caddeo C, et al. Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin. Nanomedicine. 2017;14(2):569. doi:10.1016/j.nano.2017.12.00129248674
  • Manconi M, Manca ML, Caddeo C, et al. Preparation of gellan-cholesterol nanohydrogels embedding baicalin and evaluation of their wound healing activity. Eur J Pharmaceutics Biopharmaceutics. 2018;127:S0939641117315382. doi:10.1016/j.ejpb.2018.02.015
  • Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes as carriers for skin delivery of ketotifen. Pharmazie die. 2007;62(2):133–137.
  • Santos P, Watkinson AC, Hadgraft J, Lane M. Application of microemulsions in dermal and transdermal drug delivery. Skin Pharmacol Physiol. 2008;21(5):246. doi:10.1159/00014022818562799
  • Barot BS, Patel HK, Gohel MC, et al. Microemulsion-based gel of terbinafine for the treatment of onychomycosis: optimization of formulation using d-optimal design. AAPS PharmSciTech. 2012;13(1):184–192. doi:10.1208/s12249-011-9742-722187363
  • Huabing C, Xueling C, Danrong D, Jin L, Huibi X, Xiangliang Y. Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. Int J Pharm. 2009;315(1):52–58.
  • Zhao X, Liu JP, Zhang X, et al. Enhancement of transdermal delivery of theophylline using microemulsion vehicle. Int J Pharmaceutics. 2006;327(1):58–64. doi:10.1016/j.ijpharm.2006.07.027
  • Hathout RM, Woodman TJ, Mansour S, et al. Microemulsion formulations for the transdermal delivery of testosterone. Eur J Pharm Sci. 2010;40(3):188–196. doi:10.1016/j.ejps.2010.03.00820304048
  • Patel HK, Barot BS, Parejiya PB, et al. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo–part II: rheological characterization and in vivo assessment through dermatopharmacokinetic and pilot clinical studies. Colloids Surf B Biointerfaces. 2014;119(1):145–153. doi:10.1016/j.colsurfb.2014.02.00524767976
  • Valenzuela P, Simon JAJN. Nanoparticle delivery for transdermal HRT. Nanomedicine. 2012;8(1):S83–S89. doi:10.1016/j.nano.2012.05.00822640909
  • Jain S, Jain P, Umamaheshwari RB, Jain NK. Transfersomes–a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation. Sci Pharm. 2003;29(9):1013–1026.
  • Yoko Y, Ayumi H, Qing-Li Z, et al. Protective effects of platinum nanoparticles against UV-light-induced epidermal inflammation. Small. 2010;19(11):1000–1006.
  • Shibuya S, Ozawa Y, Yokote K, et al. 209–palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity. PLoS One. 2014;76(10):S90–S90.
  • Kobayashi H, Kumagai K, Eguchi T, et al. Characterization of T cell receptors of th1 cells infiltrating inflamed skin of a novel murine model of palladium-induced metal allergy. PLoS One. 2013;8(10):e76385. doi:10.1371/journal.pone.007638524098486
  • Sun L, Liu Z, Cun D, HY Tong, Zheng Y. Application of nano- and micro-particles on the topical therapy of skin-related immune disorders. Curr Pharm Des. 2015;21(19):2643–2667.25876913
  • Ashtikar M, Nagarsekar K, Fahr A. Transdermal delivery from liposomal formulations - Evolution of the technology over the last three decades. J Controlled Release. 2016;242:126. doi:10.1016/j.jconrel.2016.09.008
  • Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A. Temoporfin-loaded invasomes: development, characterization and in vitro skin penetration studies. J Controlled Release. 2008;127(1):59–69. doi:10.1016/j.jconrel.2007.12.013
  • Dwivedi M, Sharma V, Pathak K. Pilosebaceous targeting by isotretenoin loaded invasomal gel for the treatment of eosinophilic pustular folliculitis: optimization, efficacy and cellular analysis. Drug Dev Ind Pharm. 2016;43(2):293–304. doi:10.1080/03639045.2016.123962827649797
  • Chen M, Liu X, Fahr A. Skin delivery of ferulic acid from different vesicular systems. J Biomed Nanotechnol. 2010;6(5):577–585. doi:10.1166/jbn.2010.115421329050
  • Touitou E, Dayan N, Bergelson L, et al. Ethosomes — novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Controlled Release. 2000;65(3):403–418. doi:10.1016/S0168-3659(99)00222-9
  • Cevc G. Preparation for drug application in minute droplet form. 1996.
  • Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: a review. J Controlled Release. 2017;251(Complete):11–23. doi:10.1016/j.jconrel.2017.02.011
  • Cai X, Yang X, Wang F, et al. Multifunctional pH-responsive folate receptor mediated polymer nanoparticles for drug delivery. J Biomed Nanotechnol. 2016;12(7):1453. doi:10.1166/jbn.2016.228729337470
  • Lim HJ, Kim JK, Park J, et al. Complexation of apoptotic genes with polyethyleneimine (PEI)-Coated Poly-(DL)-Lactic-Co-Glycolic acid nanoparticles for cancer cell apoptosis. J Biomed Nanotechnol. 2015;11(2):211. doi:10.1166/jbn.2015.188026349297
  • Ribeiro N, Costa-Pinheiro P, Henrique R, et al. Comprehensive analysis of secreted protein, acidic and rich in cysteine in prostate carcinogenesis: development of a 3D nanostructured bone-like model. J Biomed Nanotechnol. 2016;12(8):1667. doi:10.1166/jbn.2016.227629342345
  • Liu X, Li X, Zhang N, et al. Bioengineering strategies for the treatment of type i diabetes. J Biomed Nanotechnol. 2016;12(4):581. doi:10.1166/jbn.2016.217627301187
  • Yu H, Tang Z, Li M, et al. Cisplatin Loaded Poly (L-glutamic acid)-g-Methoxy Poly(ethylene glycol) complex nanoparticles for potential cancer therapy: preparation, in vitro and in vivo evaluation. J Biomed Nanotechnol. 2016;12(1):69. doi:10.1166/jbn.2016.215227301173
  • Votavova P, Tomala J, Subr V, et al. Novel IL-2-Poly (HPMA)nanoconjugate based immunotherapy. J Biomed Nanotechnol. 2015;11(9):1662. doi:10.1166/jbn.2015.211426485935
  • Hu B, Liu X, Zhang C, et al. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J Food Drug Anal. 2017;25(1):3. doi:10.1016/j.jfda.2016.11.00428911541
  • Kim CS, Ahn YC, Wilder P, Oh S, Chen Z, Kwon YJ. Efficient and facile delivery of gold nanoparticles in vivo using dissolvable microneedles for contrast-enhanced optical coherence tomography. Biomed Opt Express. 2010;1(1):106–113. doi:10.1364/BOE.1.00010621258450
  • Gratieri T, Kalia Y. Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier. Adv Drug Deliv Rev. 2013;65(2):315–329. doi:10.1016/j.addr.2012.04.01222626977
  • Byrne JD, Yeh JJ, JM D. Use of iontophoresis for the treatment of cancer. J Controlled Release. 2018;284:144–151. doi:10.1016/j.jconrel.2018.06.020
  • Vutla NB, Betageri GV, Banga AK. Transdermal iontophoretic delivery of enkephalin formulated in liposomes. J Pharm Sci. 1996;85(1):5–8. doi:10.1021/js950349y8926583
  • Hama S, Kimura Y, Mikami A, et al. Electric stimulus opens intercellular spaces in skin. J Biol Chem. 2014;289(4):2450–2456. doi:10.1074/jbc.M113.51441424318878
  • Wolf Horrell Erin M, Boulanger Mary C, D’Orazio John A. Melanocortin 1 receptor: structure, function, and regulation. Front Genet. 2016;7:95.27303435
  • Lahav R. Endothelin receptor B is required for the expansion of melanocyte precursors and malignant melanoma. Int J Dev Biol. 2005;49(2–3):173–180. doi:10.1016/j.colsurfb.2018.12.05515906230
  • Hirobe T, Shinpo T, Higuchi K, et al. Life cycle of human melanocytes is regulated by endothelin-1 and stem cell factor in synergy with cyclic AMP and basic fibroblast growth factor. J Dermatol Sci. 2010;57(2):123–131. doi:10.1016/j.jdermsci.2009.11.00620045284
  • Boissy RE. Melanosome transfer to and translocation in the keratinocyte. Exp Dermatol. 2003;12(s2):5–12. doi:10.1034/j.1600-0625.12.s2.1.x
  • Nystedt S, Emilsson K, Larsson AK, et al. Molecular cloning and functional expression of the gene encoding the human proteinase‐activated receptor 2. Eur J Biochem. 1995;232(1). doi:10.1111/j.1432-1033.1995.tb20784.x.
  • Bohm SK, Kong W, Bromme D, et al. Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem J. 1996;314(3):1009–1016. doi:10.1042/bj31410098615752
  • Jung H, Oh ES. FK506 positively regulates the migratory potential of melanocyte-derived cells by enhancing syndecan-2 expression. Pigment Cell Melanoma Res. 2016;29(4):434–443. doi:10.1111/pcmr.1248027060922
  • Jung H, Chung H, Chang SE, et al. FK506 regulates pigmentation by maturing the melanosome and facilitating their transfer to keratinocytes. Pigment Cell Melanoma Res. 2016;29(2):199–209. doi:10.1111/pcmr.1244326581186
  • Wijnen RMH, Ericzon BG, Tiebosch ATMG, et al. Toxicology of FK506 in the cynomolgus monkey: a clinical, biochemical, and histopathological study. Transpl Int. 1992;5(Suppl 1):S454–S458. doi:10.1111/tri.1992.5.s1.45414621844
  • Tzu JH, Utine CA, Stern ME, et al. Topical calcineurin inhibitors in the treatment of steroid-dependent atopic keratoconjunctivitis. Cornea. 2012;31(6):649–654. doi:10.1097/ICO.0b013e31822481c222378107
  • Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus. Eur J Pharm Biopharm. 2013;79(1):0–94.
  • Eberle AN. Proopiomelanocortin and the Melanocortin Peptides. Humana Press; 2000.
  • Semenza G. The melanotropins: chemistry, physiology and mechanisms of action. FEBS Lett. 1989;242:449–450. doi:10.1016/0014-5793(89)80523-X
  • Lipton J. Anti-inflammatory actions of the neuroimmunomodulator alpha-MSH. Immunol Today. 1997;18:140–145. doi:10.1016/S0167-5699(97)01009-89078687
  • Yamaguchi Y, Hearing VJ. Physiological factors that regulate skin pigmentation. Biofactors. 2009;35(2):193–199. doi:10.1002/biof.2919449448
  • Parsad D, Dogra S, Kanwar A. Quality of life in patients with vitiligo. Health Qual Life Outcomes. 2003;1(1):58. doi:10.1186/1477-7525-1-5814613564
  • Taïeb A. Vitiligo as an inflammatory skin disorder: a therapeutic perspective. Pigment Cell Melanoma Res. 2011;25(1):9–13. doi:10.1111/j.1755-148X.2011.00939.x22099450
  • Seow WY, Salgado G, Lane EB, Hauser CA. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds. Sci Rep. 2016;6:32670. doi:10.1038/srep3267027600999
  • Chan KH, Xue B, Robinson RC, et al. Systematic moiety variations of ultrashort peptides produce profound effects on self-assembly, nanostructure formation, hydrogelation, and phase transition. Sci Rep. 2017;7(1):12897. doi:10.1038/s41598-017-12694-929018249
  • Kiat HC, Wei HL, Ming N, et al. C-terminal residue of ultrashort peptides impacts on molecular self-assembly, hydrogelation, and interaction with small-molecule drugs. Sci Rep. 2018;8:1–14.29311619