139
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Enhanced Percutaneous Delivery of Methotrexate Using Micelles Prepared with Novel Cationic Amphipathic Material

, , , , , , , & show all
Pages 3539-3550 | Published online: 19 May 2020

References

  • Tran NTT, Wang T, Lin C, Tai Y. Synthesis of methotrexate-conjugated gold nanoparticles with enhanced cancer therapeutic effect. Biochem Eng J. 2013;78:175–180. doi:10.1016/j.bej.2013.04.017
  • Yamasaki SC, Mendes MT, Alponti RF, Silveira PF. Efficacy of parenteral administration of bee venom in experimental arthritis in the rat: a comparison with methotrexate. Toxicon. 2015;98:75–88. doi:10.1016/j.toxicon.2015.02.01625727381
  • Jinbu Y, Kashiwazaki A, Ozawa M, Inoue E, Kusama M, Demitsu T. Bilateral oral lichenoid lesions on the buccal mucosa due to methotrexate: report of two cases. J Oral Maxillofac Surg Med Pathol. 2015;27(1):102–105. doi:10.1016/j.ajoms.2014.04.005
  • Gulgun M, Erdem O, Oztas E, et al. Proanthocyanidin prevents methotrexate-induced intestinal damage and oxidative stress. Exp Toxicol Pathol. 2009;62(2):109–115. doi:10.1016/j.etp.2009.02.12019327973
  • Bilasy SE, Essawy SS, Mandour MF, Ali EAI, Zaitone SA. Myelosuppressive and hepatotoxic potential of leflunomide and methotrexate combination in a rat model of rheumatoid arthritis. Pharmacol Rep. 2015;67(1):102–114. doi:10.1016/j.pharep.2014.08.00925560583
  • Uchino T, Matsumoto Y, Murata A, Oka T, Miyazaki Y, Kagawa Y. Transdermal delivery of flurbiprofen from surfactant-based vesicles: particle characterization and the effect of water on in vitro transport. Int J Pharm. 2014;464(1–2):75–84. doi:10.1016/j.ijpharm.2013.12.05124445120
  • Javiera AM, Vicente GJ. Passive and iontophoretic transdermal penetration of chlorpromazine. Pharm Dev Technol. 2008;13(4):101–107.
  • Nguyen Hiep X, Banga Ajay K. Electrically and ultrasonically enhanced transdermal delivery of methotrexate. Pharmaceutics. 2018;10(3):70–78.
  • Javadzadeh Y, Hamishehkar H. Enhancing percutaneous delivery of methotrexate using different types of surfactants. Colloids Surf B Biointer. 2010;82(2):422–426. doi:10.1016/j.colsurfb.2010.09.015
  • Alam Z, Salman QO, Hyung-Seo K, Ji-Hye C, Hoo-Seong K, Jin-Ki K. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomedicine. 2016;11:3813–3824. doi:10.2147/IJN.S10956527540293
  • Nguyen Hiep X, Banga Ajay K. Delivery of methotrexate and characterization of skin treated by fabricated PLGA microneedles and fractional ablative laser. Pharm Res. 2018;35(3):68. doi:10.1007/s11095-018-2369-629468316
  • Abla Mehtab J, Ayyappa C, Conor O, Banga Ajay K. Transdermal delivery of methotrexate for pediatrics using silicon microneedles. Ther Deliv. 2013;4(5):543–551. doi:10.4155/tde.13.2423647273
  • Zhang Y, Wu Z, Zhang K, Zhao J, Ye B, Feng N. An in vitro and in vivo comparison of solid and liquid–oil cores in transdermal aconitine nanocarriers. J Pharm Sci. 2014;103(11):3602–3610. doi:10.1002/jps.2415225187419
  • Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin Drug Deliv. 2018;15(11):1127–1142. doi:10.1080/17425247.2018.153726130324813
  • Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surf B. 2019;173:581–590. doi:10.1016/j.colsurfb.2018.10.022
  • Pratik M, Sunny K, Fadoua EK, Kesharwani Siddharth S, Hemachand T. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route. Int J Pharm. 2016;500(1–2):32–41. doi:10.1016/j.ijpharm.2016.01.00526792170
  • Ren J, Fang Z, Yao L, et al. A micelle-like structure of poloxamer–methotrexate conjugates as nanocarrier for methotrexate delivery. Int J Pharm. 2015;487(1–2):77–86. doi:10.1016/j.ijpharm.2015.04.014
  • Zhen-Hua L, Qian-Fen Z, Yan-Chao L, et al. Polyamidoamine dendrimer conjugated chitosan nanoparticles for the delivery of methotrexate. Carbohydr Polym. 2013;98(1):1173–1178. doi:10.1016/j.carbpol.2013.07.02123987460
  • Paliwal R, Paliwal SR, Mishra N, Mehta A, Vyas SP. Engineered chylomicron mimicking carrier emulsome for lymph targeted oral delivery of methotrexate. Int J Pharm. 2009;380(1):181–188. doi:10.1016/j.ijpharm.2009.06.02619576973
  • Chen Y, Zhu D, Xiong X, Liu J, Zhang C. Magnesium oil enriched transdermal nanogel of methotrexate for improved arthritic joint mobility, repair, and reduced inflammation. J Microencapsul. 2020;37(1):77–90. doi:10.1080/02652048.2019.169408631795796
  • Feilong Z, Zhimei S, Yi W, Hongmei X, Li Z, Runliang F. Transdermal delivery of curcumin-loaded supramolecular hydrogels for dermatitis treatment. J Mater Sci Mater Med. 2019;30(1):11. doi:10.1007/s10856-018-6215-530617652
  • Aa AO, El-Say Khalid M, Aljaeid Bader M, Badr-Eldin Shaimaa M, Ahmed Tarek A. Optimized vinpocetine-loaded vitamin E D-α-tocopherol polyethylene glycol 1000 succinate-alpha lipoic acid micelles as a potential transdermal drug delivery system: in vitro and ex vivo studies. Int J Nanomedicine. 2019;14:33–43. doi:10.2147/IJN.S18747030587983
  • Sintov Amnon C, Levy Haim V, Igor G. Continuous transdermal delivery of L-DOPA based on a self-assembling nanomicellar system. Pharm Res. 2017;34(7):1459–1468. doi:10.1007/s11095-017-2162-y28405912
  • Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol. 2010;27(7):247–259. doi:10.3109/09687688.2010.52220321028936
  • Sheelarani B, Karunanithi P, Dash S. Effect of valency of cation on micellization behaviour of pluronic mixed micelle F127 and L64. Chem Phys Lett. 2020;739.
  • Teixeira RS, Cova TFGG, Silva SMC, et al. Novel serine-based gemini surfactants as chemical permeation enhancers of local anesthetics: A comprehensive study on structure–activity relationships, molecular dynamics and dermal delivery. Eur J Pharm Biopharm. 2015;93:205–213. doi:10.1016/j.ejpb.2015.02.02425748796
  • Silva SMC, Hu L, Sousa JJS, Pais AACC, Michniak-Kohn BB. A combination of nonionic surfactants and iontophoresis to enhance the transdermal drug delivery of ondansetron HCl and diltiazem HCl. Eur J Pharm Biopharm. 2012;80(3):663–673. doi:10.1016/j.ejpb.2011.11.01022137964
  • Qu J, Lu W. On the synthesis of N,N-dimethylaminochloropropane hydrochloride [J]. J Shaoxing Univ. 2010;7(30):29–31.
  • Imada H, Sasaki H, Yasumasu T. Diester diamine compounds, intermediates thereof, method for their preparation, and softening agents. [JP,06-340598,A].1994.
  • Knudsen KB, Northeved H, Pramod Kumar EK, et al. In vivo toxicity of cationic micelles and liposomes. Nanomedicine. 2015;11(2):467–477. doi:10.1016/j.nano.2014.08.00425168934
  • Yu B, Tang C, Yin C. Enhanced antitumor efficacy of folate modified amphiphilic nanoparticles through co-delivery of chemotherapeutic drugs and genes. Biomaterials. 2014;35(24):6369–6378. doi:10.1016/j.biomaterials.2014.04.09524818887
  • Grijalvo S, Alagia A, Puras G, Zárate J, Pedraz JL, Eritja R. Cationic vesicles based on non-ionic surfactant and synthetic aminolipids mediate delivery of antisense oligonucleotides into mammalian cells. Colloids Surf B Biointer. 2014;119:30–37. doi:10.1016/j.colsurfb.2014.04.016
  • Paecharoenchai O, Niyomtham N, Leksantikul L, et al. Nonionic surfactant vesicles composed of novel spermine-derivative cationic lipids as an effective gene carrier in vitro. AAPS PharmSciTech. 2014;15(3):722–730. doi:10.1208/s12249-014-0095-x24623349
  • Park S, Lee E, Kim JW, Kim YJ, Han SH, Kim J. Polymer-hybridized liposomes anchored with alkyl grafted poly(asparagine). J Colloid Interface Sci. 2011;364(1):31–38. doi:10.1016/j.jcis.2011.07.04621885053
  • Eloy JO, de Souza MC, Petrilli R, Barcellos JPA, Lee RJ, Marchetti JM. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf B Biointer. 2014;123:345–363. doi:10.1016/j.colsurfb.2014.09.029
  • Zhao Y, Zheng C, Zhang L, Chen Y, Ye Y, Zhao M. Knockdown of STAT3 expression in SKOV3 cells by biodegradable siRNA–PLGA/CSO conjugate micelles. Colloids Surf B Biointer. 2015;127:155–163. doi:10.1016/j.colsurfb.2015.01.034
  • Caldorera-Moore M, Guimard N, Shi L, Roy K. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv. 2010;7(4):479–495. doi:10.1517/1742524090357997120331355
  • Chen WY, Hsu CH, Huang JR, Tsai ML, Chen RH. Effect of the ionic strength of the media on the aggregation behaviors of high molecule weight chitosan. J Polym Res. 2011;18:6. doi:10.1007/s10965-010-9543-9
  • Dustin S, Yaming J, Laaser Jennifer E, Lodge Timothy P, Reineke Theresa M. Tuning cationic block copolymer micelle size by pH and ionic strength. Biomacromolecules. 2016;17(9):2849–2859. doi:10.1021/acs.biomac.6b0065427487088
  • Moghaddam B, Ali MH, Wilkhu J, et al. The application of monolayer studies in the understanding of liposomal formulations. Int J Pharm. 2011;417(1):235–244. doi:10.1016/j.ijpharm.2011.01.02021251964
  • Roya S, Sepideh R, Hamed H. Smart thermo/pH responsive magnetic nanogels for the simultaneous delivery of doxorubicin and methotrexate. Int J Pharm. 2015;487(1–2):274–284. doi:10.1016/j.ijpharm.2015.04.05125895723
  • Abdelbary AA, AbouGhaly MHH. Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: application of Box–Behnken design, in-vitro evaluation and in-vivo skin deposition study. Int J Pharm. 2015;485(1–2):235–243. doi:10.1016/j.ijpharm.2015.03.02025773359