919
Views
43
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Nanotechnology-Aided Materials in Combating Microbial Resistance and Functioning as Antibiotics Substitutes

ORCID Icon, , &
Pages 7329-7358 | Published online: 02 Oct 2020

References

  • Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009;325(5944):1089–1093. doi:10.1126/science.117666719713519
  • Linares JF, Gustafsson I, Baquero F, Martinez JL. Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci. 2006;103(51):19484–19489. doi:10.1073/pnas.060894910317148599
  • Peschel A, Sahl H-G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol. 2006;4(7):529–536. doi:10.1038/nrmicro144116778838
  • Initiative AR, Initiative PAAR. Detect and Protect Against Antibiotic Resistance.
  • Willyard C. The drug-resistant bacteria that pose the greatest health threats. Nat News. 2017;543(7643):15. doi:10.1038/nature.2017.21550
  • Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathogens Glob Health. 2015;109(7):309–318. doi:10.1179/2047773215Y.0000000030
  • Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–1098. doi:10.1016/S1473-3099(13)70318-924252483
  • Chambers HF. The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis. 2001;7(2):178. doi:10.3201/eid0702.01020411294701
  • Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610.19822890
  • Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant acinetobacter baumannii. Antimicrob Agents Chemother. 2007;51(10):3471–3484. doi:10.1128/AAC.01464-0617646423
  • Wright GD. Mechanisms of resistance to antibiotics. Curr Opin Chem Biol. 2003;7(5):563–569. doi:10.1016/j.cbpa.2003.08.00414580559
  • Neu HC. The crisis in antibiotic resistance. Science. 1992;257(5073):1064–1073. doi:10.1126/science.257.5073.10641509257
  • Berger-Bächi B. Expression of resistance to methicillin. Trends Microbiol. 1994;2(10):389–393. doi:10.1016/0966-842X(94)90617-37850207
  • Rolain JM, Parola P, Cornaglia G. New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clin Microbiol Infect. 2010;16(12):1699–1701. doi:10.1111/j.1469-0691.2010.03385.x20874758
  • Devaux I, Kremer K, Heersma H, Van Soolingen D. Clusters of multidrug-resistant mycobacterium tuberculosis cases, Europe. Emerg Infect Dis. 2009;15(7):1052. doi:10.3201/eid1507.08099419624920
  • Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30(10):499–511. doi:10.1016/j.tibtech.2012.06.00422884769
  • Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM. Applications of biosynthesized metallic nanoparticles–a review. Acta Biomater. 2014;10(10):4023–4042. doi:10.1016/j.actbio.2014.05.02224925045
  • Zhang L, Pornpattananangkul D, Hu C-M, Huang C-M. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010;17(6):585–594. doi:10.2174/09298671079041629020015030
  • Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019;48(2):415–427. doi:10.1039/c7cs00748e.30462112
  • Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128–145. doi:10.1016/j.jconrel.2011.07.00221763369
  • Miller KP, Wang L, Benicewicz BC, Decho AW. Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev. 2015;44(21):7787–7807.26190826
  • Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51. doi:10.1038/nrmicro338025435309
  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417–433. doi:10.1128/MMBR.00016-1020805405
  • Jayaraman R. Antibiotic resistance: an overview of mechanisms and a paradigm shift. Curr Sci. 2009;1475–1484.
  • Livermore DM. Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis. 2003;36(Supplement_1):S11–S23. doi:10.1086/34465412516026
  • Poole K. Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol. 2002;92(s1):55S–64S. doi:10.1046/j.1365-2672.92.5s1.8.x12000613
  • Caro RDC, Cannizzaro MV, Botti E, et al. Clindamycin versus clindamycin plus rifampicin in hidradenitis suppurativa treatment: clinical and ultrasound observations. J Am Acad Dermatol. 2019;80(5):1314–1321. doi:10.1016/j.jaad.2018.11.03530502416
  • Quintiliani R. Using pharmacodynamic and pharmacokinetic concepts to optimize treatment of infectious diseases. Infect Med. 2004;21(5):219–232.
  • Bernier SP, Surette MG. Concentration-dependent activity of antibiotics in natural environments. Front Microbiol. 2013;4:20. doi:10.3389/fmicb.2013.0002023422936
  • Wright GD. Molecular mechanisms of antibiotic resistance. Chem Commun. 2011;47(14):4055–4061. doi:10.1039/c0cc05111j
  • Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009;78(1):119–146. doi:10.1146/annurev.biochem.78.082907.14592319231985
  • Du D, Wang-Kan X, Neuberger A, et al. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol. 2018;16(9):523–539. doi:10.1038/s41579-018-0048-630002505
  • Vargiu AV, Nikaido H. Multidrug binding properties of the ACRB efflux pump characterized by molecular dynamics simulations. Proc Natl Acad Sci. 2012;109(50):20637–20642. doi:10.1073/pnas.121834810923175790
  • Siegel SD, Liu J, Ton-That H. Biogenesis of the gram-positive bacterial cell envelope. Curr Opin Microbiol. 2016;34:31–37. doi:10.1016/j.mib.2016.07.01527497053
  • Appelbaum PC, Jacobs MR. Recently approved and investigational antibiotics for treatment of severe infections caused by gram-positive bacteria. Curr Opin Microbiol. 2005;8(5):510–517. doi:10.1016/j.mib.2005.07.00116098786
  • Deck DH, Winston LG. Sulfonamides, trimethoprim, quinolones. Basic Clin Pharmacol. 2012.
  • Povolo VR, Ackermann M. Disseminating antibiotic resistance during treatment. Science. 2019;364(6442):737–738. doi:10.1126/science.aax662031123125
  • Yamasaki S, Nikaido E, Nakashima R, et al. The crystal structure of multidrug-resistance regulator RAMR with multiple drugs. Nat Commun. 2013;4(1):1–7. doi:10.1038/ncomms3078
  • Moyá B, Beceiro A, Cabot G, et al. Pan-β-lactam resistance development in pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother. 2012;56(9):4771–4778. doi:10.1128/AAC.00680-1222733064
  • Chang S, Sievert DM, Hageman JC, et al. Infection with vancomycin-resistant staphylococcus aureus containing the vana resistance gene. N Engl J Med. 2003;348(14):1342–1347. doi:10.1056/NEJMoa02502512672861
  • Achari A, Somers DO, Champness JN, Bryant PK, Rosemond J, Stammers DK. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat Struct Biol. 1997;4(6):490–497. doi:10.1038/nsb0697-4909187658
  • Zignol M, Cabibbe AM, Dean AS, et al. Genetic sequencing for surveillance of drug resistance in tuberculosis in highly endemic countries: a multi-country population-based surveillance study. Lancet Infect Dis. 2018;18(6):675–683. doi:10.1016/S1473-3099(18)30073-229574065
  • Rodríguez-Martínez JM, Briales A, Velasco C, Conejo MC, Martínez-Martínez L, Pascual A. Mutational analysis of quinolone resistance in the plasmid-encoded pentapeptide repeat proteins QnrA, QnrB and QnrS. J Antimicrob Chemother. 2009;63(6):1128–1134. doi:10.1093/jac/dkp11119357158
  • Gatermann SG, Koschinski T, Friedrich S. Distribution and expression of macrolide resistance genes in coagulase-negative staphylococci. Clin Microbiol Infect. 2007;13(8):777–781. doi:10.1111/j.1469-0691.2007.01749.x17501977
  • Gu B, Kelesidis T, Tsiodras S, Hindler J, Humphries RM. The emerging problem of linezolid-resistant staphylococcus. J Antimicrob Chemother. 2013;68(1):4–11. doi:10.1093/jac/dks35422949625
  • Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–976. doi:10.1128/AAC.01009-0919995920
  • Khan AU. Medicine at nanoscale: a new horizon. Int J Nanomedicine. 2012;7:2997. doi:10.2147/IJN.S3323822787395
  • Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10(9):597–602. doi:10.1016/S1473-3099(10)70143-220705517
  • Wright GD. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev. 2005;57(10):1451–1470. doi:10.1016/j.addr.2005.04.00215950313
  • Robicsek A, Strahilevitz J, Jacoby GA, et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006;12(1):83–88. doi:10.1038/nm134716369542
  • Ponce CA, Chabé M, George C, et al. High prevalence of pneumocystis jirovecii dihydropteroate synthase gene mutations in patients with a first episode of pneumocystis pneumonia in Santiago, Chile, and clinical response to trimethoprim-sulfamethoxazole therapy. Antimicrob Agents Chemother. 2017;61(2):e01290–16. doi:10.1128/AAC.01290-1627855071
  • Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–e55.21208910
  • Helaine S, Kugelberg E. Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol. 2014;22(7):417–424. doi:10.1016/j.tim.2014.03.00824768561
  • Conlon BP, Nakayasu ES, Fleck LE, et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature. 2013;503(7476):365–370. doi:10.1038/nature1279024226776
  • Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16(7):397. doi:10.1038/s41579-018-0019-y29720707
  • Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–138. doi:10.1016/S0140-6736(01)05321-111463434
  • Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436(7054):1171–1175. doi:10.1038/nature0391216121184
  • Gunn JS, Bakaletz LO, Wozniak DJ. What’s on the outside matters: the role of the extracellular polymeric substance of gram-negative biofilms in evading host immunity and as a target for therapeutic intervention. J Biol Chem. 2016;291(24):12538–12546. doi:10.1074/jbc.R115.70754727129225
  • Ferreira C, Pereira AM, Melo LF, Simões M. Advances in industrial biofilm control with micro-nanotechnology. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol. 2010;2:845–854.
  • Fulaz S, Vitale S, Quinn L, Casey E. Nanoparticle–biofilm interactions: the role of the EPS matrix. Trends Microbiol. 2019;27(11):915–926. doi:10.1016/j.tim.2019.07.00431420126
  • DeLeon S, Clinton A, Fowler H, Everett J, Horswill AR, Rumbaugh KP. Synergistic interactions of pseudomonas aeruginosa and staphylococcus aureus in an in vitro wound model. Infect Immun. 2014;82(11):4718–4728. doi:10.1128/IAI.02198-1425156721
  • Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8(9):634–644. doi:10.1038/nrmicro240520694026
  • Lai S, Tremblay J, Déziel E. Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol. 2009;11(1):126–136. doi:10.1111/j.1462-2920.2008.01747.x18793317
  • Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13–14):1803–1815. doi:10.1016/j.addr.2013.07.01123892192
  • Liu Y, Shi L, Su L, et al. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev. 2019;48(2):428–446. doi:10.1039/C7CS00807D30601473
  • Munir MU, Ihsan A, Sarwar Y, et al. Hollow mesoporous hydroxyapatite nanostructures; smart nanocarriers with high drug loading and controlled releasing features. Int J Pharm. 2018;544(1):112–120. doi:10.1016/j.ijpharm.2018.04.029.29678543
  • Kaur A, Preet S, Kumar V, Kumar R, Kumar R. Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids Surf B Biointerfaces. 2019;176:62–69. doi:10.1016/j.colsurfb.2018.12.04330594704
  • Pant J, Goudie MJ, Hopkins SP, Brisbois EJ, Handa H. Tunable nitric oxide release from s-nitroso-n-acetylpenicillamine via catalytic copper nanoparticles for biomedical applications. ACS Appl Mater Interfaces. 2017;9(18):15254–15264. doi:10.1021/acsami.7b0140828409633
  • Wang L, Hu C, Shao L. The-antimicrobial-activity-of-nanoparticles–present-situation. Int J Nanomedicine. 2017;12:1227–1249. doi:10.2147/IJN.S121956.28243086
  • Nguyen T-K, Selvanayagam R, Ho KKK, et al. Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles. Chem Sci. 2016;7(2):1016–1027. doi:10.1039/C5SC02769A28808526
  • Dolanský J, Henke P, Malá Z, Žárská L, Kubát P, Mosinger J. Antibacterial nitric oxide-and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers. Nanoscale. 2018;10(5):2639–2648. doi:10.1039/C7NR08822A29355861
  • Privett BJ, Broadnax AD, Bauman SJ, Riccio DA, Schoenfisch MH. Examination of bacterial resistance to exogenous nitric oxide. Nitric Oxide. 2012;26(3):169–173. doi:10.1016/j.niox.2012.02.00222349019
  • Hall JR, Rouillard KR, Suchyta DJ, Brown MD, Ahonen MJR, Schoenfisch MH. Mode of nitric oxide delivery affects antibacterial action. ACS Biomater Sci Eng. 2019.
  • Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence. 2012;3(3):271–279. doi:10.4161/viru.2032822546899
  • Rosen J, Landriscina A, Nosanchuk JD. Nitric oxide–releasing nanoparticles as an antimicrobial therapeutic In: Nanoscience in Dermatology. Elsevier; 2016;pp 127–134.
  • Mousavi SA, Ghotaslou R, Kordi S, et al. Antibacterial and antifungal effects of chitosan nanoparticles on tissue conditioners of complete dentures. Int J Biol Macromol. 2018;118:881–885. doi:10.1016/j.ijbiomac.2018.06.15129964105
  • Yang J, Lu H, Li M, et al. Development of chitosan-sodium phytate nanoparticles as a potent antibacterial agent. Carbohydr Polym. 2017;178:311–321. doi:10.1016/j.carbpol.2017.09.05329050599
  • Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol. 2016;85:467–475. doi:10.1016/j.ijbiomac.2016.01.02226780706
  • Ma Z, Garrido-Maestu A, Jeong KC. Application, mode of action, and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: a review. Carbohydr Polym. 2017;176:257–265. doi:10.1016/j.carbpol.2017.08.08228927606
  • Wassel MO, Khattab MA. Antibacterial activity against streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes. J Adv Res. 2017;8(4):387–392. doi:10.1016/j.jare.2017.05.00628560054
  • Shi Z, Neoh KG, Kang ET, Wang W. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials. 2006;27(11):2440–2449. doi:10.1016/j.biomaterials.2005.11.03616338001
  • Wang JJ, Zeng ZW, Xiao RZ, et al. Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine. 2011;6:765. doi:10.2147/IJN.S2564621589644
  • Chen F, Shi Z, Neoh KG, Kang ET. Antioxidant and antibacterial activities of eugenol and carvacrol‐grafted chitosan nanoparticles. Biotechnol Bioeng. 2009;104(1):30–39. doi:10.1002/bit.2236319408318
  • Marangon CA, Martins VCA, Ling MH, et al. Combination of rhamnolipid and chitosan in nanoparticles boosts their antimicrobial efficacy. ACS Appl Mater Interfaces. 2020;12(5):5488–5499. doi:10.1021/acsami.9b19253.31927982
  • Wyszogrodzka G, Marszałek B, Gil B, Dorożyński P. Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discov Today. 2016;21(6):1009–1018. doi:10.1016/j.drudis.2016.04.00927091434
  • Luo Y, Hossain M, Wang C, et al. Targeted nanoparticles for enhanced x-ray radiation killing of multidrug-resistant bacteria. Nanoscale. 2013;5(2):687–694. doi:10.1039/C2NR33154C23223782
  • Qiu Z, Yu Y, Chen Z, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc Natl Acad Sci. 2012;109(13):4944–4949. doi:10.1073/pnas.110725410922411796
  • Ramalingam B, Parandhaman T, Das SK. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. escherichia coli and pseudomonas aeruginosa. ACS Appl Mater Interfaces. 2016;8(7):4963–4976. doi:10.1021/acsami.6b0016126829373
  • Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831. doi:10.3389/fmicb.2016.0183127899918
  • Song Z, Wu Y, Wang H, Han H. Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways. Mater Sci Eng C. 2019;99:255–263. doi:10.1016/j.msec.2018.12.053
  • Acharya D, Singha KM, Pandey P, Mohanta B, Rajkumari J, Singha LP. Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Sci Rep. 2018;8(1):201. doi:10.1038/s41598-017-18590-629317760
  • Mahmoudi M, Serpooshan V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano. 2012;6(3):2656–2664. doi:10.1021/nn300042m22397679
  • Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of pseudomonas aeruginosa and enterobacter aerogenes and methicillin-resistant staphylococcus aureus. Appl Environ Microbiol. 2012;78(8):2768–2774. doi:10.1128/AEM.06513-1122286985
  • Cheon JY, Kim SJ, Rhee YH, Kwon OH, Park WH. Shape-dependent antimicrobial activities of silver nanoparticles. Int J Nanomedicine. 2019;14:2773. doi:10.2147/IJN.S19647231118610
  • Hu Z, Zhang L, Zhong L, Zhou Y, Xue J, Li Y. Preparation of an antibacterial chitosan-coated biochar-nanosilver composite for drinking water purification. Carbohydr Polym. 2019;219:290–297. doi:10.1016/j.carbpol.2019.05.01731151528
  • Liu Z, Wang Y, Zu Y, et al. Synthesis of polyethylenimine (PEI) functionalized silver nanoparticles by a hydrothermal method and their antibacterial activity study. Mater Sci Eng C. 2014;42:31–37. doi:10.1016/j.msec.2014.05.007
  • Zhao R, Lv M, Li Y, et al. Stable nanocomposite based on pegylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl Mater Interfaces. 2017;9(18):15328–15341. doi:10.1021/acsami.7b0398728422486
  • Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol. 2016;12(3):789–799. doi:10.1016/j.nano.2015.11.016
  • Wang L, Zhang T, Li P, et al. Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano. 2015;9(6):6532–6547.25994391
  • Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine. 2018;13:8013. doi:10.2147/IJN.S18929530568442
  • Alavi M, Karimi N, Valadbeigi T. Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via protoparmeliopsis muralis lichen aqueous extract against multi-drug-resistant bacteria. ACS Biomater Sci Eng. 2019;5(9):4228–4243. doi:10.1021/acsbiomaterials.9b00274
  • Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol. 2007;3(1):95–101. doi:10.1016/j.nano.2006.12.001
  • Wang Y, Ding X, Chen Y, et al. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials. 2016;101:207–216. doi:10.1016/j.biomaterials.2016.06.00427294538
  • Mottais A, Berchel M, Le Gall T, Sibiril Y. Antibacterial and transfection activities of nebulized formulations incorporating long n-alkyl chain silver n-heterocyclic carbene complexes. Int J Pharm. 2019;567:118500. doi:10.1016/j.ijpharm.2019.11850031288056
  • Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S. The protective nanoshield against virus infection. Crit Rev Microbiol. 2016;42(1):46–56. doi:10.3109/1040841X.2013.87984924754250
  • Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7(3):219–242. doi:10.1007/s40820-015-0040-x
  • Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 2017;22(12):1825–1834. doi:10.1016/j.drudis.2017.08.00628847758
  • Siddiqi KS, Ur Rahman A, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett. 2018;13(1):1–13. doi:10.1186/s11671-018-2532-329299709
  • Król A, Pomastowski P, Rafińska K, Railean-Plugaru V, Buszewski B. Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Adv Colloid Interfac Sci. 2017;249:37–52. doi:10.1016/j.cis.2017.07.033
  • Kadiyala U, Turali-Emre ES, Bahng JH, Kotov NA, VanEpps JS. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant staphylococcus aureus (MRSA). Nanoscale. 2018;10(10):4927–4939. doi:10.1039/C7NR08499D29480295
  • Ramani M, Ponnusamy S, Muthamizhchelvan C. From zinc oxide nanoparticles to microflowers: a study of growth kinetics and biocidal activity. Mater Sci Eng C. 2012;32(8):2381–2389. doi:10.1016/j.msec.2012.07.011
  • Pati R, Mehta RK, Mohanty S, et al. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomed Nanotechnol. 2014;10(6):1195–1208. doi:10.1016/j.nano.2014.02.012
  • Meghana S, Kabra P, Chakraborty S, Padmavathy N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015;5(16):12293–12299. doi:10.1039/C4RA12163E
  • Hassan MS, Amna T, Yang O-B, El-Newehy MH, Al-Deyab SS, Khil M-S. Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloids Surf B Biointerfaces. 2012;97:201–206. doi:10.1016/j.colsurfb.2012.04.03222609604
  • Ananth A, Dharaneedharan S, Heo M-S, Mok YS. Copper oxide nanomaterials: synthesis, characterization and structure-specific antibacterial performance. Chem Eng J. 2015;262:179–188. doi:10.1016/j.cej.2014.09.083
  • Azam A, Ahmed AS, Oves M, Khan MS, Memic A. Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and-negative bacterial strains. Int J Nanomedicine. 2012;7:3527. doi:10.2147/IJN.S2902022848176
  • Laha D, Pramanik A, Laskar A, Jana M, Pramanik P, Karmakar P. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage. Mater Res Bull. 2014;59:185–191. doi:10.1016/j.materresbull.2014.06.024
  • Li M, Gao L, Schlaich C, et al. Construction of functional coatings with durable and broad-spectrum antibacterial potential based on mussel-inspired dendritic polyglycerol and in situ-formed copper nanoparticles. ACS Appl Mater Interfaces. 2017;9(40):35411–35418. doi:10.1021/acsami.7b1054128914053
  • Ranjan S, Ramalingam C. Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett. 2016;14(4):487–494. doi:10.1007/s10311-016-0586-y
  • Huang -Y-Y, Choi H, Kushida Y, Bhayana B, Wang Y, Hamblin MR. Broad-spectrum antimicrobial effects of photocatalysis using titanium dioxide nanoparticles are strongly potentiated by addition of potassium iodide. Antimicrob Agents Chemother. 2016;60(9):5445–5453. doi:10.1128/AAC.00980-1627381399
  • Venkatasubbu GD, Baskar R, Anusuya T, Seshan CA, Chelliah R. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids Surf B Biointerfaces. 2016;148:600–606. doi:10.1016/j.colsurfb.2016.09.04227694049
  • Chen S, Guo Y, Zhong H, et al. Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles. Chem Eng J. 2014;256:238–246. doi:10.1016/j.cej.2014.07.006
  • Brunet L, Lyon DY, Hotze EM, Alvarez PJJ, Wiesner MR. Comparative photoactivity and antibacterial properties of c60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol. 2009;43(12):4355–4360. doi:10.1021/es803093t19603646
  • Liu N, Chang Y, Feng Y, et al. {101}–{001} Surface heterojunction-enhanced antibacterial activity of titanium dioxide nanocrystals under sunlight irradiation. ACS Appl Mater Interfaces. 2017;9(7):5907–5915. doi:10.1021/acsami.6b1637328125216
  • Kalathil S, Khan MM, Ansari SA, Lee J, Cho MH. Band gap narrowing of titanium dioxide (TiO 2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale. 2013;5(14):6323–6326. doi:10.1039/c3nr01280h23760526
  • Ghosal K, Agatemor C, Špitálsky Z, Thomas S, Kny E. Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chem Eng J. 2019;358:1262–1278. doi:10.1016/j.cej.2018.10.117
  • Wolfrum EJ, Huang J, Blake DM, et al. Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environ Sci Technol. 2002;36(15):3412–3419. doi:10.1021/es011423j12188373
  • Dahl M, Liu Y, Yin Y. Composite titanium dioxide nanomaterials. Chem Rev. 2014;114(19):9853–9889. doi:10.1021/cr400634p25011918
  • Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence. 2011;2(5):395–401. doi:10.4161/viru.2.5.1703521921677
  • Lellouche J, Friedman A, Lahmi R, Gedanken A, Banin E. Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int J Nanomedicine. 2012;7:1175. doi:10.2147/IJN.S3063122419866
  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002;18(17):6679–6686. doi:10.1021/la0202374
  • Haggstrom JA, Klabunde KJ, Marchin GL. Biocidal properties of metal oxide nanoparticles and their halogen adducts. Nanoscale. 2010;2(3):399–405. doi:10.1039/B9NR00245F20644823
  • Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA. Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interfac Sci. 2014;209:40–48. doi:10.1016/j.cis.2013.12.011
  • Suresh AK, Pelletier DA, Wang W, et al. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium shewanella oneidensis. Acta Biomater. 2011;7(5):2148–2152. doi:10.1016/j.actbio.2011.01.02321241833
  • Rai A, Prabhune A, Perry CC. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem. 2010;20(32):6789–6798. doi:10.1039/c0jm00817f
  • Feng Y, Chen W, Jia Y, et al. N-Heterocyclic molecule-capped gold nanoparticles as effective antibiotics against multi-drug resistant bacteria. Nanoscale. 2016;8(27):13223–13227. doi:10.1039/C6NR03317B27355451
  • Zhao Y, Jiang X. Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale. 2013;5(18):8340–8350. doi:10.1039/c3nr01990j23893008
  • Bagga P, Hussain Siddiqui H, Akhtar J, Mahmood T, Zahera M, Sajid Khan M. Gold nanoparticles conjugated levofloxacin: for improved antibacterial activity over levofloxacin alone. Curr Drug Deliv. 2017;14(8):1114–1119. doi:10.2174/156720181466617031611343228302030
  • Payne JN, Waghwani HK, Connor MG, et al. Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol. 2016;7:607. doi:10.3389/fmicb.2016.0060727330535
  • Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. The molecular mechanism of action of bactericidal gold nanoparticles on escherichia coli. Biomaterials. 2012;33(7):2327–2333. doi:10.1016/j.biomaterials.2011.11.05722182745
  • Gu H, Ho PL, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 2003;3(9):1261–1263. doi:10.1021/nl034396z
  • Pornpattananangkul D, Zhang L, Olson S, et al. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc. 2011;133(11):4132–4139. doi:10.1021/ja111110e21344925
  • Pillai PP, Kowalczyk B, Kandere-Grzybowska K, Borkowska M, Grzybowski BA. Engineering gram selectivity of mixed-charge gold nanoparticles by tuning the balance of surface charges.Angew Chem Int Ed. 2016;55(30):8610–8614. doi:10.1002/anie.201602965
  • Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, et al. Zerovalent bismuth nanoparticles inhibit streptococcus mutans growth and formation of biofilm. Int J Nanomedicine. 2012;7:2109.22619547
  • Zhao Y, Zhang Z, Dang H. A simple way to prepare bismuth nanoparticles. Mater Lett. 2004;58(5):790–793. doi:10.1016/j.matlet.2003.07.013
  • Wang F, Tang R, Yu H, Gibbons PC, Buhro WE. Size-and shape-controlled synthesis of bismuth nanoparticles. Chem Mater. 2008;20(11):3656–3662. doi:10.1021/cm8004425
  • Gao W, Thamphiwatana S, Angsantikul P, Zhang L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(6):532–547. doi:10.1002/wnan.128225044325
  • Sadiq IM, Chowdhury B, Chandrasekaran N, Mukherjee A. Antimicrobial sensitivity of escherichia coli to alumina nanoparticles. Nanomed Nanotechnol. 2009;5(3):282–286. doi:10.1016/j.nano.2009.01.002
  • Ji H, Sun H, Qu X. Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev. 2016;105:176–189. doi:10.1016/j.addr.2016.04.00927129441
  • Xia M-Y, Xie Y, Yu C-H, et al. Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. J Control Release. 2019;307:16–31. doi:10.1016/j.jconrel.2019.06.01131185232
  • Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper. ACS Nano. 2010;4(7):4317–4323. doi:10.1021/nn101097v20593851
  • Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4(10):5731–5736. doi:10.1021/nn101390x20925398
  • Paszkiewicz S, Szymczyk A. Graphene-based nanomaterials and their polymer nanocomposites In: Nanomaterials and Polymer Nanocomposites. Elsevier; 2019:pp 177–216.
  • Shaker MA, Shaaban MI. Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: in vitro antibacterial study. Int J Pharm. 2017;525(1):71–84. doi:10.1016/j.ijpharm.2017.04.01928411141
  • Xu J, Xu B, Shou D, Xia X, Hu Y. Preparation and evaluation of vancomycin-loaded N-trimethyl chitosan nanoparticles. Polymers (Basel). 2015;7(9):1850–1870. doi:10.3390/polym7091488
  • Tom RT, Suryanarayanan V, Reddy PG, Baskaran S, Pradeep T. Ciprofloxacin-protected gold nanoparticles. Langmuir. 2004;20(5):1909–1914. doi:10.1021/la035856715801462
  • Friedman AJ, Phan J, Schairer DO, et al. Antimicrobial and anti-inflammatory activity of chitosan–alginate nanoparticles: a targeted therapy for cutaneous pathogens. J Invest Dermatol. 2013;133(5):1231–1239. doi:10.1038/jid.2012.39923190896
  • Yoksan R, Chirachanchai S. Silver nanoparticle-loaded chitosan–starch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Mater Sci Eng C. 2010;30(6):891–897. doi:10.1016/j.msec.2010.04.004
  • Smith AW. Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev. 2005;57(10):1539–1550. doi:10.1016/j.addr.2005.04.00715950314
  • Zhao Y, Dai X, Wei X, et al. Near-infrared light-activated thermosensitive liposomes as efficient agents for photothermal and antibiotic synergistic therapy of bacterial biofilm. ACS Appl Mater Interfaces. 2018;10(17):14426–14437. doi:10.1021/acsami.8b0132729651836
  • Gonzalez Gomez A, Xu C, Hosseinidoust Z. Preserving the efficacy of glycopeptide antibiotics during nanoencapsulation in liposomes. ACS Infect Dis. 2019;5(10):1794–1801. doi:10.1021/acsinfecdis.9b0023231397146
  • Pushparaj Selvadoss P, Nellore J, Balaraman Ravindrran M, Sekar U. Novel pyochelin-based pegylated liposomes for enhanced delivery of antibiotics against resistant clinical isolates of pseudomonas aeruginosa. Artif Cells Nanomed Biotechnol. 2018;46(8):2043–2053.29179607
  • Obonyo M, Zhang L, Thamphiwatana S, Pornpattananangkul D, Fu V, Zhang L. Antibacterial activities of liposomal linolenic acids against antibiotic-resistant helicobacter pylori. Mol Pharm. 2012;9(9):2677–2685. doi:10.1021/mp300243w22827534
  • Yuan Z, Tam VH. Polymyxin B: a new strategy for multidrug-resistant gram-negative organisms. Expert Opin Investig Drugs. 2008;17(5):661–668. doi:10.1517/13543784.17.5.661
  • Rukavina Z, Vanić Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics. 2016;8(2):18. doi:10.3390/pharmaceutics8020018
  • Inoue K. Functional dendrimers, hyperbranched and star polymers. Prog Polym Sci. 2000;25(4):453–571. doi:10.1016/S0079-6700(00)00011-3
  • Mignani SM, El Brahmi N, El Kazzouli S. Original multivalent gold (III) and dual gold (III)–copper (II) conjugated phosphorus dendrimers as potent antitumoral and antimicrobial agents. Mol Pharm. 2017;14(11):4087–4097. doi:10.1021/acs.molpharmaceut.7b0077128960997
  • Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT. Dendrimer− silver complexes and nanocomposites as antimicrobial agents. Nano Lett. 2001;1(1):18–21. doi:10.1021/nl005502p
  • Hetrick EM, Shin JH, Paul HS, Schoenfisch MH. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials. 2009;30(14):2782–2789. doi:10.1016/j.biomaterials.2009.01.05219233464
  • Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet J-B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 2008;61(4):869–876. doi:10.1093/jac/dkn03418305203
  • Sapsford KE, Algar WR, Berti L, et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev. 2013;113(3):1904–2074. doi:10.1021/cr300143v23432378
  • Bing W, Chen Z, Sun H, et al. Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Res. 2015;8(5):1648–1658. doi:10.1007/s12274-014-0654-1
  • Guo G, Zhou H, Wang Q, et al. Nano-layered magnesium fluoride reservoirs on biomaterial surfaces strengthen polymorphonuclear leukocyte resistance to bacterial pathogens. Nanoscale. 2017;9(2):875–892. doi:10.1039/C6NR07729C27995243
  • Geilich BM, Gelfat I, Sridhar S, van de Ven AL, Webster TJ. Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication. Biomaterials. 2017;119:78–85. doi:10.1016/j.biomaterials.2016.12.01128011336
  • Dinali R, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A. Iron oxide nanoparticles in modern microbiology and biotechnology. Crit Rev Microbiol. 2017;43(4):493–507. doi:10.1080/1040841X.2016.126770828068855
  • Anghel I, Grumezescu AM, Andronescu E, et al. Magnetite nanoparticles for functionalized textile dressing to prevent fungal biofilms development. Nanoscale Res Lett. 2012;7(1):501. doi:10.1186/1556-276X-7-50122950367
  • Chifiriuc C, Grumezescu V, Grumezescu AM, Saviuc C, Lazăr V, Andronescu E. Hybrid magnetite nanoparticles/rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity. Nanoscale Res Lett. 2012;7(1):209. doi:10.1186/1556-276X-7-20922490675
  • Alavi M, Karimi N. Ultrasound assisted-phytofabricated fe3o4 NPS with antioxidant properties and antibacterial effects on growth, biofilm formation, and spreading ability of multidrug resistant bacteria. Artif Cells Nanomed Biotechnol. 2019;47(1):2405–2423. doi:10.1080/21691401.2019.162456031187647
  • Kim H, Jones MN. The delivery of benzyl penicillin to staphylococcus aureus biofilms by use of liposomes. J Liposome Res. 2004;14(3–4):123–139. doi:10.1081/LPR-20002988715676122
  • Huang C-M, Chen C-H, Pornpattananangkul D, et al. Eradication of drug resistant staphylococcus aureus by liposomal oleic acids. Biomaterials. 2011;32(1):214–221. doi:10.1016/j.biomaterials.2010.08.07620880576
  • Lee W-H, Loo C-Y, Traini D, Young PM. Nano-and micro-based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opin Drug Deliv. 2015;12(6):1009–1026. doi:10.1517/17425247.2015.103950925912721
  • Kim B, Pang H-B, Kang J, Park J-H, Ruoslahti E, Sailor MJ. Immunogene therapy with fusogenic nanoparticles modulates macrophage response to staphylococcus aureus. Nat Commun. 2018;9(1):1–13. doi:10.1038/s41467-017-02088-w29317637
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227. doi:10.2147/IJN.S12195628243086
  • Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev. 2018;127:46–57. doi:10.1016/j.addr.2017.09.01528939377
  • Hindi KM, Ditto AJ, Panzner MJ, et al. The antimicrobial efficacy of sustained release silver–carbene complex-loaded l-tyrosine polyphosphate nanoparticles: characterization, in vitro and in vivo studies. Biomaterials. 2009;30(22):3771–3779. doi:10.1016/j.biomaterials.2009.03.04419395021
  • Graves JL, Thomas M, Ewunkem JA. Antimicrobial nanomaterials: why evolution matters. Nanomaterials. 2017;7(10):283. doi:10.3390/nano7100283
  • Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. Pharm Ther. 2017;42(12):742.
  • Stankic S, Suman S, Haque F, Pure VJ. Multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnol. 2016;14(1):73. doi:10.1186/s12951-016-0225-6
  • da Silva BL, Caetano BL, Chiari-Andréo BG, Pietro RCLR, Chiavacci LA. Increased antibacterial activity of ZnO nanoparticles: influence of size and surface modification. Colloids Surf B Biointerfaces. 2019;177:440–447. doi:10.1016/j.colsurfb.2019.02.01330798065
  • Munir MU, Ihsan A, Javed I, et al. Controllably biodegradable hydroxyapatite nanostructures for cefazolin delivery against antibacterial resistance. ACS Omega. 2019;4(4):7524–7532. doi:10.1021/acsomega.9b00541.
  • Zare EN, Makvandi P, Borzacchiello A, Tay FR, Ashtari B, Padil VVT. Antimicrobial gum bio-based nanocomposites and their industrial and biomedical applications. Chem Commun. 2019;55(99):14871–14885. doi:10.1039/C9CC08207G
  • Singh J, Dhaliwal AS. Synthesis, characterization and swelling behavior of silver nanoparticles containing superabsorbent based on grafted copolymer of polyacrylic acid/guar gum. Vacuum. 2018;157:51–60. doi:10.1016/j.vacuum.2018.08.017
  • Othman SH. Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Sci Proc. 2014;2:296–303.
  • Zare EN, Lakouraj MM, Mohseni M. Biodegradable polypyrrole/ dextrin conductive nanocomposite: synthesis, characterization, antioxidant and antibacterial activity. Synth Met. 2014;187:9–16.