349
Views
24
CrossRef citations to date
0
Altmetric
Review

Review of Curcumin Physicochemical Targeting Delivery System

, , , , , & show all
Pages 9799-9821 | Published online: 07 Dec 2020

References

  • Di Maio M, Basch E, Bryce J, Perrone F. Patient-reported outcomes in the evaluation of toxicity of anticancer treatments. Nat Rev Clin Oncol. 2016;13(5):951–955. doi:10.1038/nrclinonc.2015.222
  • Cinci L, Mannelli LD, Maidecchi A, et al. Effects of Hypericum perforatum extract on oxaliplatin-induced neurotoxicity: in vitro evaluations. Z Naturforsch C. 2017;72(5–6):219–226. doi:10.1515/znc-2016-019428160544
  • Malekinejad H, Ahsan S, Delkhoshkasmaie F, et al. Cardioprotective effect of royal jelly on paclitaxel-induced cardio-toxicity in rats. Iran J Basic Med Sci. 2016;19(2):221–227.27081469
  • Mullally WJ, O’Súilleabháin CB, Brady C, et al. Vinorelbine induced perforation of a metastatic gastric lesion. Irish J Med Sci. 2017;186(3):571–575. doi:10.1007/s11845-016-1536-128039597
  • Ninan PJ, Prasath D, James M. Toxicity and tolerability of paclitaxel and carboplatin regime in patients with epithelial ovarian cancer at a tertiary care hospital. SSRG Int J Med Sci. 2018;5(1):2393–9117.
  • Zhao SJ, Pi C, Ye Y, Zhao L, Wei YM. Recent advances of analogues of curcumin for treatment of cancer. Eur J Med Chem. 2019;180:524–535. doi:10.1016/j.ejmech.2019.07.03431336310
  • Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of Curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218. doi:10.1208/s12248-012-9432-823143785
  • Moghadamtousi SZ, Kadir HA, Hassandarvish P, et al. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int. 2014;2014(1):186864.24877064
  • Marchiani A, Rozzo C, Fadda A, et al. Curcumin and curcumin-like molecules: from spice to drugs. Curr Med Chem. 2014;21(2):204–222. doi:10.2174/09298673210213120611581023590716
  • Shen L, Liu L, Ji HF. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr Res. 2017;61(1):1361780. doi:10.1080/16546628.2017.136178028814952
  • Feng T, Wei Y, Lee RJ, et al. Liposomal curcumin and its application in cancer. Int J Nanomed. 2017;12:6027–6044. doi:10.2147/IJN.S132434
  • Ramasamy TS, Ayob AZ, Myint HHL, et al. Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy. Cancer Cell Int. 2015;15(1):96. doi:10.1186/s12935-015-0241-x26457069
  • Vishvakarma NK. Novel antitumor mechanisms of curcumin: implication of altered tumor metabolism, reconstituted tumor microenvironment and augmented myelopoiesis. Phytochem Rev. 2014;13(3):717–724. doi:10.1007/s11101-014-9364-2
  • Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014;46(1):2–18. doi:10.4143/crt.2014.46.1.224520218
  • Yallapu MM, Nagesh PKB, Jaggi M, Chauhan SC. Therapeutic applications of curcumin nanoformulations. AAPS J. 2015;17(6):1341–1356. doi:10.1208/s12248-015-9811-z26335307
  • Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–79. doi:10.1016/j.addr.2012.10.00223088862
  • Bertrand N, Wu J, Xu XY, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66(1):2–25. doi:10.1016/j.addr.2013.11.00924270007
  • Gera M, Sharma N, Ghosh M, et al. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget. 2017;8(39):66680–66698. doi:10.18632/oncotarget.1916429029547
  • Naksuriya O, Okonogi S, Schiffelers RM, et al. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35(10):3365–3383. doi:10.1016/j.biomaterials.2013.12.09024439402
  • Tajbakhsh A, Hasanzadeh M, Rezaee M, et al. Therapeutic potential of novel formulated forms of curcumin in the treatment of breast cancer by the targeting of cellular and physiological dysregulated pathways. J Cell Physiol. 2017;233:3.
  • Wei D, Hui L. Research progress in new formulation of curcumin for anti-tumor. Acad J Second Military Med Univ. 2015;36(7):771–775.
  • Lee WH, Loo CY, Young PM, et al. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv. 2014;11(8):1183–1201. doi:10.1517/17425247.2014.91668624857605
  • Dagar P, Dahiya P, Bhambi M. Recent advances in curcumin nanoformulations. Nano Sci Nano Technol an Indian J. 2014;8(12):458–474.
  • Hashemi M, Ebrahimian M. Recent advances in nanoformulations for co-delivery of curcumin and chemotherapeutic drugs. Int J Nanomed. 2017;4(1):1–7.
  • Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62(2):90–99. doi:10.1016/j.phrs.2010.03.00520380880
  • Wang JJ, Huang SW. Research progress on novel carrier-modified methods and evaluation of active targeting antitumor preparation. Chin Herb Med. 2014;6(1):22–28. doi:10.1016/S1674-6384(14)60002-2
  • Sonekar S, Mishra M, Patel A, et al. Formulation and evaluation of folic acid conjugated gliadin nanoparticles of curcumin for targeting colon cancer cells. J Appl Pharm Sci. 2016;6(10):068–074. doi:10.7324/JAPS.2016.601009
  • Wen X, Cheng X, Hu D, et al. Combination of curcumin with an anti-transferrin receptor antibody suppressed the growth of malignant gliomas in vitro. Turk Neurosurg. 2016;26(2):209–214.26956814
  • Mulik RS, Mönkkönen J, Juvonen RO, et al. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm. 2010;398(1):190–203. doi:10.1016/j.ijpharm.2010.07.02120655375
  • Felber AE, Dufresne MH, Leroux JC. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev. 2012;64(11):979–992. doi:10.1016/j.addr.2011.09.00621996056
  • Tila D, Yazdaniarazi SN, Ghanbarzadeh S, et al. pH-sensitive, polymer modified, plasma stable niosomes: promising carriers for anti-cancer drugs. Excli Journal. 2015;14(4):21.26417350
  • Hu FQ, Zhang YY, You J, et al. pH triggered doxorubicin delivery of PEGylated glycolipid conjugate micelles for tumor targeting therapy. Mol Pharm. 2012;9(9):2469–2478. doi:10.1021/mp300002v22827551
  • Wu T, Hua MY, Chen JP, et al. Effects of external magnetic field on biodistribution of nanoparticles: A histological study. J Magn Magn Mater. 2007;311(1):372–375. doi:10.1016/j.jmmm.2006.10.1202
  • Yallapu MM, Ebeling MC, Khan S, et al. Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment. Mol Cancer Ther. 2013;12(8):1471–1480. doi:10.1158/1535-7163.MCT-12-122723704793
  • Cui Y, Zhang M, Zeng F, Jin HY, Xu Q, Huang YZ. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. Acs Appl Mater Inter. 2016;8(47):32159–32169. doi:10.1021/acsami.6b10175
  • Li ZQ, Guan JJ. Thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv. 2011;8(8):991–1007. doi:10.1517/17425247.2011.58165621564003
  • Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol. 2004;14(3):198–206. doi:10.1016/j.semradonc.2004.04.00815254862
  • Bueno PVA, Souza PR, Follmann HDM, et al. N,N-Dimethyl chitosan/heparin polyelectrolyte complex vehicle for efficient heparin delivery. Int J Biol Macromol. 2015;75:186–191. doi:10.1016/j.ijbiomac.2015.01.03025625782
  • Talaie F, Atyabi F, Azjdarzadeh M, et al. Overcoming therapeutic obstacles in inflammatory bowel diseases: A comprehensive review on novel drug delivery strategies. Eur J Pharm Sci. 2013;49(4):712–722. doi:10.1016/j.ejps.2013.04.03123665411
  • Ju L, Cailin F, Wenlan W, et al. Preparation and properties evaluation of a novel pH-sensitive liposomes based on imidazole-modified cholesterol derivatives. Int J Pharm. 2016;518(1–2):213–219. doi:10.1016/j.ijpharm.2016.11.04427889588
  • Moku G, Gulla SK, Nimmu NV, et al. Delivering anti-cancer drugs with endosomal pH-sensitive anti-cancer liposomes. Biomater Sci. 2016;4(4):627–638. doi:10.1039/C5BM00479A26806172
  • Jelezova I, Drakalska E, Momekova D, et al. Curcumin loaded pH-sensitive hybrid lipid/block copolymer nanosized drug delivery systems. Eur J Pharm Sci. 2015;78:67–78. doi:10.1016/j.ejps.2015.07.00526159739
  • De LV, Milano F, Mancini E, et al. Encapsulation of curcumin-loaded liposomes for colonic drug delivery in a pH-responsive polymer cluster using a pH-driven and organic solvent-free process. Molecules. 2018;23(4):739. doi:10.3390/molecules23040739
  • Gugulothu D, Kulkarni A, Patravale V, et al. pH-sensitive nanoparticles of curcumin–celecoxib combination: evaluating drug synergy in ulcerative colitis model. J Pharm Sci. 2014;103(2):687–696. doi:10.1002/jps.2382824375287
  • Dandekar P, Dhumal R, Jain R, et al. Toxicological evaluation of pH-sensitive nanoparticles of curcumin: acute, sub-acute and genotoxicity studies. Food Chem Toxicol. 2010;48(8):2073–2089. doi:10.1016/j.fct.2010.05.00820470854
  • Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol. 1978;43(2):86–92. doi:10.1111/j.1600-0773.1978.tb02240.x
  • Beloqui A, Coco R, Memvanga PB, et al. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int J Pharm. 2014;473(1–2):203–212.25014369
  • Prajakta D, Ratnesh J, Chandan K, et al. Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. J Biomed Nanotechnol. 2009;5(5):445–455. doi:10.1166/jbn.2009.103820201417
  • Huang YC, Lam UI. Chitosan/fucoidan pH sensitive nanoparticles for oral delivery system. J Chin Chem Soc. 2011;58(6):779–785. doi:10.1002/jccs.201190121
  • Abouaitah KE, Farghali AA, Swiderska-Sroda A, et al. pH-controlled release system for curcumin based on functionalized dendritic mesoporous silica nanoparticles. J Nanomed Nanotechnol. 2016;7(1):351.
  • Kim S, Philippot S, Fontanay S, et al. pH- and glutathione-responsive release of curcumin from mesoporous silica nanoparticles coated using tannic acid-Fe(III) complex. RSC Adv. 2015;5(110):90550–90558. doi:10.1039/C5RA16004A
  • Daryasari MP, Akhgar MR, Mamashli F, et al. Chitosan-folate coated mesoporous silica nanoparticles as a smart and pH-sensitive system for curcumin delivery. RSC Adv. 2016;6(107):105578–105588. doi:10.1039/C6RA23182A
  • Gao Y, Li Y, Li Y, et al. PSMA-mediated endosome escape-accelerating polymeric micelles for targeted therapy of prostate cancer and the real time tracing of their intracellular trafficking. Nanoscale. 2014;7(2):597–612. doi:10.1039/C4NR05738D
  • Zhang J, Li J, Shi Z, et al. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater. 2017;58:349–364. doi:10.1016/j.actbio.2017.04.02928455219
  • Zhang Y, Yang C, Wang W, et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016;6(1):21225. doi:10.1038/srep2122526876480
  • Lu W, Wan J, She ZJ, Jiang XG. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release. 2007;118(1):38–53. doi:10.1016/j.jconrel.2006.11.01517240471
  • Ishihara T, Takeda M, Sakamoto H, et al. Accelerated blood clearance phenomenon upon repeated injection of PEG-modified PLA-nanoparticles. Pharm Res. 2009;26(10):2270–2279. doi:10.1007/s11095-009-9943-x19633820
  • Gao C, Tang F, Gong G, et al. pH-Responsive prodrug nanoparticles based on a sodium alginate derivative for selective co-release of doxorubicin and curcumin into tumor cells. Nanoscale. 2017;9(34):12533. doi:10.1039/C7NR03611F28819666
  • Xing ZH, Wei JH, Cheang TY, et al. Bifunctional pH-sensitive Zn(II)-curcumin nanoparticles/siRNA effectively inhibit growth of human bladder cancer cells. J Mater Chem B. 2014;2(18):2714–2724. doi:10.1039/c3tb21625j32261437
  • Wang DS, Zhou YX, Li CW, et al. Recent progress in research of pH-sensitive polymeric micelles as drug delivery system. Chin J New Drugs. 2016;25(19):2218–2224.
  • Sajomsang W, Gonil P, Saesoo S, et al. Synthesis and anticervical cancer activity of novel pH responsive micelles for oral curcumin delivery. Int J Pharm. 2014;477(1–2):261–272. doi:10.1016/j.ijpharm.2014.10.04225455774
  • Zhai S, Ma Y, Chen Y, et al. Synthesis of an amphiphilic block copolymer containing zwitterionic sulfobetaine as a novel pH-sensitive drug carrier. Polym Chem. 2014;5(4):1285–1297.
  • Wu Z, Cai M, Xie X, et al. The effect of architecture/composition on the pH sensitive micelle properties and in vivo study of curcuminin-loaded micelles containing sulfobetaines. RSC Adv. 2015;5(129):106989–107000. doi:10.1039/C5RA20847E
  • Wei H, Shi H, Qiao M, et al. pH-sensitive micelles for the intracellular co-delivery of curcumin and Pluronic L61 unimers for synergistic reversal effect of multidrug resistance. Sci Rep. 2017;7:42465. doi:10.1038/srep4246528195164
  • Plasschaert SLA, de Bont ESJM, Boezen M, et al. Expression of multidrug resistance-associated proteins predicts prognosis in childhood and adult acute lymphoblastic leukemia. Clin Cancer Res. 2005;11(24 Pt 1):8661–8668. doi:10.1158/1078-0432.CCR-05-109616361551
  • Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–234.16518375
  • Alvarez AI, Real R, Pérez MG, Prieto JG, Merino G. Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J Pharm Sci. 2010;99(2):598–617. doi:10.1002/jps.2185119544374
  • Evers R, Kool M, Smith AJ, van Deemter L, de Haas M, Borst P. Inhibitory effect of the reversal agents V-104, GF120918 and Pluronic L61 on MDR1 Pgp-, MRP1- and MRP2-mediated transport. Br J Cancer. 2000;83(3):366–374. doi:10.1054/bjoc.2000.126010917553
  • Raveendran R, Bhuvaneshwar GS, Sharma CP. Hemocompatible curcumin-dextran micelles as pH sensitive pro-drugs for enhanced therapeutic efficacy in cancer cells. Carbohyd Polym. 2016;137:497–507. doi:10.1016/j.carbpol.2015.11.017
  • Fang XB, Zhang JM, Xie X, et al. pH-sensitive micelles based on acid-labile pluronic F68-curcumin conjugates for improved tumor intracellular drug delivery. Int J Pharm. 2016;502(1–2):28–37. doi:10.1016/j.ijpharm.2016.01.02926784981
  • Li H, Li M, Chen C, et al. On-demand combinational delivery of curcumin and doxorubicin via a pH-labile micellar nanocarrier. Int J Pharm. 2015;495(1):572–578. doi:10.1016/j.ijpharm.2015.09.02226387617
  • Yang RL, Zhang SA, Kong DL, et al. Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin. Pharm Res. 2012;29(12):3512–3525. doi:10.1007/s11095-012-0848-822961588
  • Yu H, Mu H, Xiu L, et al. A novel ketal-based chitosan as nano-vehicles for potential pH-sensitive nanomedicine delivery. Nanosci Nanotech Let. 2013;5(9):1007–1011. doi:10.1166/nnl.2013.1660
  • Sareen R, Jain N, Rajkumari A, et al. pH triggered delivery of curcumin from Eudragit-coated chitosan microspheres for inflammatory bowel disease: characterization and pharmacodynamic evaluation. Drug Deliv. 2016;23(1):55–62.
  • Kumar S, KesharwaniHimanshi Mathur SS, Tyagi M, et al. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin. Eur J Pharm Sci. 2016;82:86–96. doi:10.1016/j.ejps.2015.11.01026588875
  • Patra D, Sleem F. A new method for pH triggered curcumin release by applying poly(L-lysine) mediated nanoparticle-congregation. Anal Chim Acta. 2013;795(18):60–68. doi:10.1016/j.aca.2013.07.06323998538
  • Lin YP, Zhang K, Zhang RH, et al. Magnetic nanoparticles applied in targeted therapy and magnetic resonance imaging: crucial preparation parameters, indispensable pre-treatments, updated research advancements and future perspectives. J Mater Chem B. 2020;8(28):5973–5991. doi:10.1039/D0TB00552E32597454
  • Asnaashari Eivari H, Rahdar A, Arabi H. Preparation of super paramagnetic iron oxide nanoparticles and investigation their magnetic properties. Int J Eng Sci Invest. 2012;1(3):2251–8843.
  • Gao YL, Zhu GM, Ma TT. Progress in Fe3O4 magnetic nanoparticles and its application in biomedical fields. Chem Ind Eng Prog. 2017;36(3):973–980.
  • Pankhurst QA, Connolly JS, Jones SK, Dobso J. Application of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36(13):R167–R181. doi:10.1088/0022-3727/36/13/201
  • Janjic JM, Shao P, Zhang S, et al. Perfluorocarbon nanoemulsions with fluorescent, colloidal and magnetic properties. Biomaterials. 2014;35(18):4958–4968. doi:10.1016/j.biomaterials.2014.03.00624674463
  • Yan H, Zhang JC, You CX, Song ZW, Yu BW, Shen Y. Surface modification of Fe3O4 nanoparticles and their magnetic properties. Int J Min Met Mater. 2009;16(002):226–229. doi:10.1016/S1674-4799(09)60038-8
  • Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials. 2008;29(29):4012–4021. doi:10.1016/j.biomaterials.2008.07.00418649936
  • Pilapong C, Sitthichai S, Thongtem S, Thongtem T. Smart magnetic nanoparticle-aptamer probe for targeted imaging and treatment of hepatocellular carcinoma. Int J Pharm. 2014;473(1–2):469–474. doi:10.1016/j.ijpharm.2014.07.03625089503
  • Kasai H, Kawai K, Shiraishi T, et al. Effects of Fe3O4 Magnetic Nanoparticles on A549 Cells. Int J Mol Sci. 2013;14(8):15546–15560. doi:10.3390/ijms14081554623892599
  • Polo E, Pino PD, Pardo A, et al. Magnetic nanoparticles for cancer therapy and bioimaging. Nanooncology. 2018;239–279.
  • Sideris S, Aoun F, Zanaty M, et al. Efficacy of weekly paclitaxel treatment as a single agent chemotherapy following first-line cisplatin treatment in urothelial bladder cancer. Mol Clin Oncol. 2016;4(6):1063–1067. doi:10.3892/mco.2016.82127284445
  • Bae YJ, Yoon YI, Yoon TJ, et al. Ultrasound-guided delivery of siRNA and a chemotherapeutic drug by using microbubble complexes: in vitro and in vivo evaluations in a prostate cancer model. Korean J Radiol. 2016;17(4):497–508.27390541
  • Meador CB, Jin H, De SE, et al. Optimizing the sequence of anti-EGFR targeted therapy in EGFR-mutant lung cancer. Mol Cancer Ther. 2015;14(2):542–552. doi:10.1158/1535-7163.MCT-14-072325477325
  • Yonesaka K, Hirotani K, Kawakami H, et al. Anti-HER3 monoclonal antibody patritumab sensitizes refractory non-small cell lung cancer to the epidermal growth factor receptor inhibitor erlotinib. Oncogene. 2015;35(7):878–886. doi:10.1038/onc.2015.14225961915
  • Zhou Q, Ye M, Lu Y, et al. Curcumin improves the tumoricidal effect of mitomycin C by suppressing ABCG2 expression in stem cell-like breast cancer cells. PLoS One. 2015;10(8):e0136694. doi:10.1371/journal.pone.013669426305906
  • Talekar M, Ouyang Q, Goldberg MS, et al. Cosilencing of PKM-2 and MDR-1 sensitizes multidrug-resistant ovarian cancer cells to paclitaxel in a murine model of ovarian cancer. Mol Cancer Ther. 2015;14(7):1521–1531. doi:10.1158/1535-7163.MCT-15-010025964202
  • Mancarella S, Greco V, Baldassarre F, et al. Polymer-coated magnetic nanoparticles for curcumin delivery to cancer cells. Macromol Biosci. 2015;15(10):1365–1374. doi:10.1002/mabi.20150014226085082
  • Chin SF, Iyer KS, Saunders M, et al. Encapsulation and sustained release of curcumin using superparamagnetic silica reservoirs. Chem-Eur J. 2010;15(23):5661–5665. doi:10.1002/chem.200802747
  • Silambarasi T, Latha S. Formulation and evaluation of curcumin loaded magnetic nanoparticles for cancer therapy. Int J Pharm Sci & Res. 2012;3(5):1–16.
  • Latorre M, Rinaldi C. Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. P R Health Sci J. 2009;28(3):227–238.19715115
  • Cheng KK, Wang YX, Chow AHL, et al. Amyloid plaques binding curcumin conjugated magnetic nanoparticles for diagnosis in Alzheimer’s disease TG2576 mice. Alzheimers Dement. 2014;10(4):152–153. doi:10.1016/j.jalz.2014.04.12223954029
  • Cheng KK, Chan PS, Fan S, et al. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials. 2015;44(44):155–172. doi:10.1016/j.biomaterials.2014.12.00525617135
  • Magro M, Campos R, Baratella D, et al. A magnetically drivable nanovehicle for curcumin with antioxidant capacity and MRI relaxation properties. Chemistry. 2015;20(37):11913–11920. doi:10.1002/chem.201402820
  • Yallapu MM, Othman SF, Curtis ET, et al. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int J Nanomed. 2012;7(1):1761–1779.
  • Salem M. Curcumin-loaded magnetic nanoaggregates conjugated with folic acid for targeted cancer treatment. Electronic Thesis Dissertation Repository. 2014;2206.
  • Manju S, Sharma CP, Sreenivasan K. Targeted coadministration of sparingly soluble paclitaxel and curcumin into cancer cells by surface engineered magnetic nanoparticles. J Mater Chem. 2011;21(39):15708–15717. doi:10.1039/c1jm12528a
  • Akrami M, Khoobi M, Khalilvand-Sedagheh M, et al. Evaluation of multilayer coated magnetic nanoparticles as biocompatible curcumin delivery platforms for breast cancer treatment. RSC Adv. 2015;5(107):88096–88107. doi:10.1039/C5RA13838H
  • Zhou Y, Wang C, Wang F, et al. β-Cyclodextrin and its derivatives functionalized magnetic nanoparticles for targeting delivery of curcumin and cell imaging. Chin J Chem. 2016;34(6):599–608. doi:10.1002/cjoc.201500756
  • Almeida EAMS, Bellettini IC, Garcia FP, et al. Curcumin-loaded dual pH- and thermo-responsive magnetic microcarriers based on pectin maleate for drug delivery. Carbohyd Polym. 2017;171:259–266. doi:10.1016/j.carbpol.2017.05.034
  • Tang YD, Jin T, Flesch RCC. Numerical temperature analysis of magnetic hyperthermia considering nanoparticle clustering and blood vessels. IEEE T Magn. 2017;53(10):1–6. doi:10.1109/TMAG.2017.2722425
  • Hardiansyah A, Yang MC, Liu TY, et al. Hydrophobic drug-loaded PEGylated magnetic liposomes for drug-controlled release. Nanoscale Res Lett. 2017;12(1):355. doi:10.1186/s11671-017-2119-428525950
  • Hu L, Huang M, Wang J, et al. Preparation of magnetic poly(lactic-co-glycolic acid) microspheres with a controllable particle size based on a composite emulsion and their release properties for curcumin loading. J Appl Polym Sci. 2016;133(16):43317. doi:10.1002/app.43317
  • Kini S, Bahadur D, Panda D. Magnetic PLGA nanospheres: a dual therapy for cancer. Ieee T Magn. 2011;47(10):2882–2886. doi:10.1109/TMAG.2011.2158403
  • Hu RL, Ke XF, Jiang H, et al. Effect of interleukin-2 treatment combined with magnetic fluid hyperthermiaon lewis lung cancer-bearing mice. Biomed Rep. 2016;50(1):59–62. doi:10.3892/br.2015.540
  • Zhou S, Palmeira CM, Wallace KB. Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett. 2001;121(3):151–157. doi:10.1016/S0378-4274(01)00329-011369469
  • Srivastava G, Mehta JL. Currying the heart: curcumin and cardioprotection. J Cardiovasc Pharmacol Ther. 2009;14(1):22–27. doi:10.1177/107424840832960819153099
  • Namdari M, Eatemadi A. Cardioprotective effects of curcumin-loaded magnetic hydrogel nanocomposite (nanocurcumin) against doxorubicin-induced cardiac toxicity in rat cardiomyocyte cell lines. Artif Cell Nanomed B. 2017;45(4):731–739. doi:10.1080/21691401.2016.1261033
  • Rahman CV, Kuhn G, White LJ, et al. PLGA/PEG-hydrogel composite scaffolds with controllable mechanical properties. J Biomed Mater Res B. 2013;101B(4):648–655. doi:10.1002/jbm.b.32867
  • Li XY, Dou JF, Wang S, Zhang L, Zhai GX. Preparation and characteristics of curcumin loaded microemulsion based in situ thermosensitive gelling system. Pharm Biotechno. 2013;020(003):225–228.
  • Chen X, Zhi F, Jia X, et al. Enhanced brain targeting of curcumin by intranasal administration of a thermosensitive poloxamer hydrogel. J Pharm Pharmacol. 2013;65(6):807–816. doi:10.1111/jphp.1204323647674
  • Sudhakar K, Rao KM, Subha MCS, et al. Temperature-responsive poly(-vinylcaprolactam-co-hydroxyethyl methacrylate) nanogels for controlled release studies of curcumin. Des Monomers Polym. 2015;18(8):705–713. doi:10.1080/15685551.2015.1070497
  • Gao M, Bao X, Lei AN, et al. Retention time of curcumin thermosensitive hydrogels for injection in solid tumor. China Pharm. 2012;23(3):206–208.
  • Gao M, Xu H, Zhang C, et al. Preparation and characterization of curcumin thermosensitive hydrogels for intratumoral injection treatment. Drug Dev Ind Pharm. 2014;40(11):1557–1564. doi:10.3109/03639045.2013.83857924059282
  • Chen P, Zhang H, Cheng S, et al. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids Surfaces A. 2016;506:356–362. doi:10.1016/j.colsurfa.2016.06.054
  • Chen D, Yu H, Mu H, et al. Novel chitosan derivative for temperature and ultrasound dual-sensitive liposomal microbubble gel. Carbohydr Polym. 2013;94(1):17–23. doi:10.1016/j.carbpol.2012.12.06923544504
  • Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm. 2017;113:211–228. doi:10.1016/j.ejpb.2016.12.01928087380
  • Biswas S, Kumari P, Lakhani PM, et al. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci. 2016;83:184–202. doi:10.1016/j.ejps.2015.12.03126747018
  • Yi Y, Lin G, Chen SY, et al. Polyester micelles for drug delivery and cancer theranostics: current achievements, progresses and future perspectives. Mater Sci Eng C. 2017;83(2):218–232. doi:10.1016/j.msec.2017.10.004
  • Zhang W, Cui T, Liu L, et al. Improving anti-tumor activity of Curcumin by polymeric micelles in thermosensitive hydrogel system in colorectal peritoneal carcinomatosis model. J Biomed Nanotechnol. 2015;11(7):1173–1182. doi:10.1166/jbn.2015.207326307840
  • Hu YF, Darcos V, Monge S, et al. Thermo-responsive release of curcumin from micelles prepared by self-assembly of amphiphilic P(NIPAAm-co-DMAAm)-b-PLLA-b-P(NIPAAm-co-DMAAm) triblock copolymers. Int J Pharm. 2014;476(1–2):31–40. doi:10.1016/j.ijpharm.2014.09.02925260217