525
Views
25
CrossRef citations to date
0
Altmetric
Review

Engineered Nanomaterials: The Challenges and Opportunities for Nanomedicines

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 161-184 | Published online: 08 Jan 2021

References

  • Valavanidis A, Vlachogianni T. Engineered nanomaterials for pharmaceutical and biomedical products new trends, benefits and opportunities. Pharm Bioprocess. 2016;4:13.
  • Dublin TD. Research policy. Am J Public Heal Nations Heal. 1959;49:265–268. doi:10.2105/AJPH.49.2.265
  • Analysis, M. Biomaterials and Medical Applications Nanotechnology 2020 Market Analysis. Vol. 3; 2020:2019–2020.
  • Pinto MP, et al. A molecular stratification of chilean gastric cancer patients with potential clinical applicability. Cancers (Basel). 2020;12:1–14.
  • Nikalje AP. Nanotechnology and its applications in medicine. Med Chem (Los Angeles). 2015;5. doi:10.4172/2161-0444.1000247
  • Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013;24(6):1159–1166. doi:10.1016/j.copbio.2013.02.020
  • Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2007;2(1):16. doi:10.1186/1745-6673-2-16
  • Grewal AS, Lather V, Sharma N, et al. Recent updates on nanomedicine based products: current scenario and future opportunities. Appl Clin Res Clin Trials Regul Aff. 2018;5:132–144. doi:10.2174/2213476X05666180611115135
  • D’Mello SR, Cruz CN, Chen M-L, et al. The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechnol. 2017;12:523–529. doi:10.1038/nnano.2017.67
  • Nanomedicine market size worth $350.8 billion by 2025 | CAGR: 11.2%. Available from: https://www.grandviewresearch.com/press-release/global-nanomedicine-market. Accessed December 17, 2020.
  • Navya PN, Daima HK. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg. 2016;3:1. doi:10.1186/s40580-016-0064-z
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–760. doi:10.1038/nnano.2007.387
  • Conde J, Bao C, Tan Y, et al. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells. Adv Funct Mater. 2015;25(27):4183–4194. doi:10.1002/adfm.201501283
  • Dickerson EB, Dreaden EC, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008;269(1):57–66. doi:10.1016/j.canlet.2008.04.026
  • Nam J, Son S, Park KS, et al. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater. 2019;4:398–414. doi:10.1038/s41578-019-0108-1
  • Turchanin A, Weber D, Büenfeld M, et al. Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport. ACS Nano. 2011;5:3896–3904. doi:10.1021/nn200297n
  • Moshfegh AZ. Nanoparticle catalysts. J Phys D Appl Phys. 2009;42(23):233001. doi:10.1088/0022-3727/42/23/233001
  • Yu X, Zhang X, Zou J, et al. Solvent-tunable microstructures of aligned carbon nanotube films. Adv Mater Interfaces. 2016;3(17):1–6. doi:10.1002/admi.201600352
  • Conde J, et al. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chemist. 2014;2:48.
  • Chen D, Zhao C, Ye J, et al. In situ biosynthesis of fluorescent platinum nanoclusters: toward self-bioimaging-guided cancer theranostics. ACS Appl Mater Interfaces. 2015;7(32):18163–18169. doi:10.1021/acsami.5b05805
  • Zhu C, Zhang H, Li W, et al. Suppress orthotopic colon cancer and its metastasis through exact targeting and highly selective drug release by a smart nanomicelle. Biomaterials. 2018;161:144–153. doi:10.1016/j.biomaterials.2018.01.043
  • Patra JK, et al. Nano based drug delivery systems: recent developments and future prospects 10 technology 1007 nanotechnology 03 chemical sciences 0306 physical chemistry (incl. structural) 03 chemical sciences 0303 macromolecular and materials chemistry 11 medical and health sciences 1115 pharmacology and pharmaceutical sciences 09 engineering 0903 biomedical engineering prof Ueli Aebi, Prof Peter Gehr. J Nanobiotechnology. 2018;16:71.
  • Blum AP, Kammeyer JK, Rush AM, et al. Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc. 2015;137(6):2140–2154. doi:10.1021/ja510147n
  • Tasso M, Lago Huvelle MA, Diaz Bessone I, Picco AS. Toxicity Assessment of Nanomaterials. Cham: Springer; 2020:383–446. doi:10.1007/978-3-030-39923-8_13
  • Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2:MR17–MR71. doi:10.1116/1.2815690
  • Sims CM, et al. Redox-active nanomaterials for nanomedicine applications. Nanoscale. 2017;9:15226–15251.
  • Krug HF. Nanosafety research-are we on the right track? Angewandte Chemie - International Edition. 2014;53:12304–12319. doi:10.1002/anie.201403367
  • Kumar V, Lakkaboyana SK, Sharma N, Maitra SS, Hanafiah MM. Nanotoxicology and its remediation. In: Intelligent Nanomaterials for Drug Delivery Applications. Elsevier; 2020:163–178. doi:10.1016/b978-0-12-817830-0.00009-6
  • Sayes CM. Nanotoxicology: Developing a Responsible Technology. Cham: Springer; 2020:43–55. doi:10.1007/978-3-030-19951-7_4
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–839. doi:10.1289/ehp.7339
  • Podila R, Brown JM. Toxicity of engineered nanomaterials: a physicochemical perspective. J Biochem Mol Toxicol. 2013;27:50–55. doi:10.1002/jbt.21442
  • Srivastava N, Saxena SK. Opportunities in clinical translation and commercialization of nanomedicine. In: NanoBioMedicine. Singapore: Springer; 2020:501–517. doi:10.1007/978-981-32-9898-9_22
  • Chapter 1 Nanotechnology and nanomaterials. Stud Interface Sci. 2006;23:1–69.
  • Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical J. 2018;26:64–70. doi:10.1016/j.jsps.2017.10.012
  • Robinson DKR, Huang L, Guo Y, Porter AL. Forecasting innovation pathways (FIP) for new and emerging science and technologies. Technol Forecast Soc Change. 2013;80:267–285. doi:10.1016/j.techfore.2011.06.004
  • Roco MC, et al. Innovative and responsible governance of nanotechnology for societal development. In: Nanotechnology Research Directions for Societal Needs in 2020. Netherlands: Springer; 2011:561–617. doi:10.1007/978-94-007-1168-6_14
  • Oberdörster G, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. In: Particle and Fibre Toxicology. Vol. 2. 2005:1–35.
  • Schirmer K. Mechanisms of nanotoxicity. In: Frontiers of Nanoscience. Vol. 7. Elsevier Ltd; 2014:195–221.
  • Rampado R, Crotti S, Caliceti P, Pucciarelli S, Agostini M. Recent advances in understanding the protein corona of nanoparticles and in the formulation of “Stealthy” Nanomaterials. Front Bioengineer Biotechnol. 2020. doi:10.3389/fbioe.2020.00166
  • Wright PF. Potential risks and benefits of nanotechnology: perceptions of risk in sunscreens. Med J Aust. 2016;204:369–370. doi:10.5694/mja15.01128
  • Khan AU, Khan M, Cho MH, Khan MM. Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure. Bioprocess Biosyst Eng. 2020;43(8):1339–1357. doi:10.1007/s00449-020-02330-8
  • Pruyn SA, Rajabi M, Adeyeye M, Mousa SA. Pharmaceutical applications of water-soluble polymers in nanomedicine and drug delivery. In: The Road from Nanomedicine to Precision Medicine. Jenny Stanford Publishing; 2020:299–334. doi:10.1201/9780429295010-7
  • Martinelli C, Pucci C, Ciofani G. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioengineering. 2019;3:11502. doi:10.1063/1.5079943
  • Bremer-Hoffmann S, Halamoda-Kenzaoui B, Borgos SE. Identification of regulatory needs for nanomedicines. J Interdiscip Nanomedicine. 2018;3:4–15. doi:10.1002/jin2.34
  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–2387. doi:10.1007/s11095-016-1958-5
  • Oerlemans C, Bult W, Bos M, et al. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm. Res. 2010;27:2569–2589. doi:10.1007/s11095-010-0233-4
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med. 2019;4(3):e10143
  • Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21. doi:10.1016/j.ygyno.2008.04.033
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48. doi:10.1016/j.addr.2012.09.037
  • Yang M, Xie S, Adhikari VP, et al. The synergistic fungicidal effect of low-frequency and low-intensity ultrasound with amphotericin B-loaded nanoparticles on C. albicans in vitro. Int J Pharm. 2018;542:232–241. doi:10.1016/j.ijpharm.2018.03.033
  • Wang-Gillam A, Li C-P, Bodoky G, et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 2016;387:545–557. doi:10.1016/S0140-6736(15)00986-1
  • Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399:129–139. doi:10.1016/j.ijpharm.2010.07.044
  • van der Meel R, Sulheim E, Shi Y, et al. Smart cancer nanomedicine. Nat Nanotechnol. 2019;14:1007–1017. doi:10.1038/s41565-019-0567-y
  • Hare JI, Lammers T, Ashford MB, et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38. doi:10.1016/j.addr.2016.04.025
  • Azuaje F. Artificial intelligence for precision oncology: beyond patient stratification. Npj Precis Oncol. 2019;3:1–5. doi:10.1038/s41698-018-0074-x
  • Ho D, Wang P, Kee T. Artificial intelligence in nanomedicine. Nanoscale Horizons. 2019;4:f365–377. doi:10.1039/C8NH00233A
  • Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science (80-). 2018;359:1355–1360. doi:10.1126/science.aar7112
  • Chauhan VP, Martin JD, Liu H, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun. 2013;4. doi:10.1038/ncomms3516
  • Lu J, Liu X, Liao Y-P, et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat Commun. 2017;8. doi:10.1038/s41467-017-01651-9
  • Mehra NK, Cai D, Kuo L, Hein T, Palakurthi S. Safety and toxicity of nanomaterials for ocular drug delivery applications. Nanotoxicology. 2016;10:836–860. doi:10.3109/17435390.2016.1153165
  • Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics. 2020;12:1–51. doi:10.3390/pharmaceutics12020142
  • Alavi M, Webster TJ. Nano liposomal and cubosomal formulations with platinum-based anticancer agents: therapeutic advances and challenges. Nanomedicine. 2020;15:2399–2410. doi:10.2217/nnm-2020-0199
  • Alavi M, Varma RS. Overview of novel strategies for the delivery of anthracyclines to cancer cells by liposomal and polymeric nanoformulations. Int J Biol Macromol. 2020;164:2197–2203. doi:10.1016/j.ijbiomac.2020.07.274
  • Wang C, Yu Y, Irfan M, et al. Rational design of DNA framework-based hybrid nanomaterials for anticancer drug delivery. Small. 2020;16:1–9. doi:10.1002/smll.202002578
  • Prasad M, Lambe UP, Brar B, et al. Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother. 2018;97:1521–1537. doi:10.1016/j.biopha.2017.11.026
  • Alavi M, Karimi N. Ultrasound assisted-phytofabricated Fe3O4 NPs with antioxidant properties and antibacterial effects on growth, biofilm formation, and spreading ability of multidrug resistant bacteria. Artif Cells Nanomedicine Biotechnol. 2019;47:2405–2423. doi:10.1080/21691401.2019.1624560
  • Alavi M, Rai M. Recent progress in nanoformulations of silver nanoparticles with cellulose, chitosan, and alginic acid biopolymers for antibacterial applications. Appl Microbiol Biotechnol. 2019;103:8669–8676. doi:10.1007/s00253-019-10126-4
  • Alavi M, Jabari E, Jabbari E. Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: a review. Expert Rev Anti Infec Thert. 2020;1–10. doi:10.1080/14787210.2020.1810569
  • Szakal C, Roberts SM, Westerhoff P, et al. Measurement of nanomaterials in foods: integrative consideration of challenges and future prospects. ACS Nano. 2014;8:3128–3135. doi:10.1021/nn501108g
  • Radomska A, Leszczyszyn J, Radomski MW. The nanopharmacology and nanotoxicology of nanomaterials: new opportunities and challenges. Adv Clin Exp Med. 2016;25:151–162. doi:10.17219/acem/60879
  • Anuje M, Sivan A, Khot VM, Pawaskar PN. Cellular interaction and toxicity of nanostructures. In: Nanomedicines for Breast Cancer Theranostics. Elsevier; 2020:193–243. doi:10.1016/b978-0-12-820016-2.00010-0
  • Sanjay SS. Precautions to avoid consequences leading to nanotoxification. In: Nanoparticles in Medicine. Singapore: Springer;2020:201–220. doi:10.1007/978-981-13-8954-2_8
  • Cataldi M, Vigliotti C, Mosca T, Cammarota M, Capone D. Emerging role of the spleen in the pharmacokinetics of monoclonal antibodies, nanoparticles and exosomes. Int J Mol Sci. 2017;18:1249. doi:10.3390/ijms18061249
  • Ibrahim K, Al-Mutary M, Bakhiet A, Khan H. Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules. 2018;23:1848. doi:10.3390/molecules23081848
  • Kumar A, Kumar P, Anandan A, et al. Engineered nanomaterials: knowledge gaps in fate, exposure, toxicity, and future directions. J Nanomater. 2014;2014:1–16. doi:10.1155/2014/130198
  • De Matteis V. Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics. 2017;5:29. doi:10.3390/toxics5040029
  • Oberdörster G, Kuhlbusch TAJ. In vivo effects: methodologies and biokinetics of inhaled nanomaterials. NanoImpact. 2018;10:38–60. doi:10.1016/j.impact.2017.10.007
  • Shah JN, Shah AP, Shah HJ, Sutariya VB. Biointeractions of Nanomaterials. Biointeractions of Nanomaterials. CRC Press; 2014. doi:10.1201/b17191
  • Qiao R, Jia Q, Hüwel S, et al. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano. 2012;6:3304–3310. doi:10.1021/nn300240p
  • Busquets M, Espargaró A, Sabaté R, Estelrich J. Magnetic nanoparticles cross the blood-brain barrier: when physics rises to a challenge. Nanomaterials. 2015;5:2231–2248. doi:10.3390/nano5042231
  • Thangadurai TD, Manjubaashini N, Thomas S, Maria HJ. Fundamentals of Nanostructures. Cham: Springer; 2020:29–45. doi:10.1007/978-3-030-26145-0_3
  • Bergin IL, Witzmann FA. Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int J Biomed Nanosci Nanotechnol. 2013;3:163. doi:10.1504/IJBNN.2013.054515
  • Zhou X, Liu Y, Wang X, Li X, Xiao B. Effect of particle size on the cellular uptake and anti-inflammatory activity of oral nanotherapeutics. Colloids Surfaces B Biointerfaces. 2020;187:110880. doi:10.1016/j.colsurfb.2020.110880
  • Sahu SC, Casciano DA. Nanotoxicity: From in vivo and in vitro Models to Health Risks. 2009. doi:10.1002/9780470747803
  • Fernández-Bertólez N, Costa C, Bessa MJ, et al. Assessment of oxidative damage induced by iron oxide nanoparticles on different nervous system cells. Mutat Res Genet Toxicol Environ Mutagen. 2019;845:402989. doi:10.1016/j.mrgentox.2018.11.013
  • Dhawan A, Anderson D, Shanker R. Nanotoxicology: Experimental and Computational Perspectives. 2017.
  • Onoue S, Yamada S, Chan K. Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine. 2014;9:1025. doi:10.2147/IJN.S38378
  • Fard JK, Jafari S, Eghbal MA. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull. 2015;5:447–454. doi:10.15171/apb.2015.061
  • Zhao H, Li L, Zhan H, Chu Y, Sun B. Mechanistic understanding of the engineered nanomaterial-induced toxicity on kidney. J Nanomater. 2019;2019:1–12. doi:10.1155/2019/2954853
  • Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.
  • Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol - Cell Physiol. 2008;294:460–467. doi:10.1152/ajpcell.00211.2007
  • Johnston HJ, Hutchison G, Christensen FM, et al. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol. 2010;40:328–346. doi:10.3109/10408440903453074
  • Sukhanova A, Bozrova S, Sokolov P, et al. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 2018;13:1–21. doi:10.1186/s11671-018-2457-x
  • Kumar A, Aileen Senapati V, Dhawan A. Chapter 4: protocols for in vitro and in vivo toxicity assessment of engineered nanoparticles. In: Issues in Toxicology. Vol. 2018. 2018:94–132.
  • Johnston LJ, Gonzalez-Rojano N, Wilkinson KJ, Xing B. Key challenges for evaluation of the safety of engineered nanomaterials. NanoImpact. 2020;18:100219. doi:10.1016/j.impact.2020.100219
  • Gamboa JM, Leong KW. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv Drug Deliv Rev. 2013;65:800–810. doi:10.1016/j.addr.2013.01.003
  • Lee J, Lilly GD, Doty RC, Podsiadlo P, Kotov NA. In vitro toxicity testing of nanoparticles in 3D cell culture. Small. 2009;5.
  • Kumar V, Kumari A, Guleria P, Yadav SK. Evaluating the toxicity of selected types of nanochemicals. Rev Environ Contam Toxicol. 2012;215:39–121. doi:10.1007/978-1-4614-1463-6_2
  • Das R, Leo BF, Murphy F. The toxic truth about carbon nanotubes in water purification: a perspective view. Nanoscale Res Lett. 2018;13:183. doi:10.1186/s11671-018-2589-z
  • Tomalia DA, Nixon LS, Hedstrand DM. Engineering critical nanoscale design parameters (CNDPs): A strategy for developing effective nanomedicine therapies and assessing quantitative nanoscale structure-activity relationships (QNSARs). In: Pharmaceutical Applications of Dendrimers. Elsevier; 2019:3–47. doi:10.1016/B978-0-12-814527-2.00001-9
  • Vetten MA, Gulumian M. Interference of gold nanoparticles with in vitro endotoxin detection assays. Curr Nanosci. 2018. doi:10.2174/1573413715666181212120013
  • Ostermann M, Sauter A, Xue Y, et al. Label-free impedance flow cytometry for nanotoxicity screening. Sci. Rep. 2020;10:142. doi:10.1038/s41598-019-56705-3
  • Palacios‐Hernandez T, Diaz‐Diestra DM, Nguyen AK, et al. Cytotoxicity, cellular uptake and apoptotic responses in human coronary artery endothelial cells exposed to ultrasmall superparamagnetic iron oxide nanoparticles. J. Appl. Toxicol. 2020;40:918–930. doi:10.1002/jat.3953
  • Shah J, Bhagat S, Singh S. Standard biological assays to estimate nanoparticle toxicity and biodistribution. In: Nanotoxicity. Vols. 71–104. Elsevier; 2020. doi:10.1016/b978-0-12-819943-5.00004-x
  • Sehgal SN, Camardo JS, Scarola JA, Maida BT. Rapamycin (sirolimus, rapamune). In: Current Opinion in Nephrology and Hypertension. Vol. 4. 1995:482–487.
  • Karabasz A, Szczepanowicz K, Cierniak A, Bereta J, Bzowska M. In vitro toxicity studies of biodegradable, polyelectrolyte nanocapsules. Int J Nanomedicine. 2018;13:5159–5172. doi:10.2147/IJN.S169120
  • Zhang Y, Cao X, Liang T, Tong Z. Acid/light dual-responsive biodegradable polymeric nanocarriers for efficient intracellular drug delivery. Polym Bull. 2019;76:1775–1792. doi:10.1007/s00289-018-2470-3
  • Su S, Kang PM. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials. 2020;10(4):656. doi:10.3390/nano10040656
  • Ilinskaya AN, Dobrovolskaia MA. Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine. 2013;8:969–981. doi:10.2217/nnm.13.49
  • Sulheim E, et al. Cytotoxicity of poly(Alkyl cyanoacrylate) nanoparticles. International Journal of Molecular Sciences. 2017;18(11). doi:10.3390/ijms18112454
  • Kim SY, Lee YM. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(ε-caprolactone) as novel anticancer drug carriers. Biomaterials. 2001;22:1697–1704. doi:10.1016/S0142-9612(00)00292-1
  • Hurst HE, Martin MD. Toxicology. In Pharmacology and Therapeutics for Dentistry. Seventh. Elsevier; 2017:603–620. doi:10.1016/B978-0-323-39307-2.00040-0
  • Oberdörster G, Stone V, Donaldson K. Toxicology of nanoparticles: A historical perspective. In: Nanotoxicology. Vol. 1. 2007:2–25.
  • Spoo W. Concepts and terminology. In: Clinical Veterinary Toxicology. Elsevier; 2004:2–7. doi:10.1016/b0-32-301125-x/50004-2
  • Rodallec A, Benzekry S, Lacarelle B, Ciccolini J, Fanciullino R. Pharmacokinetics variability: why nanoparticles are not just magic-bullets in oncology. Crit Rev Oncol Hematol. 2018;129:1–12. doi:10.1016/j.critrevonc.2018.06.008
  • Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. In: Molecular Pharmaceutics. Vol. 5. Mol Pharm; 2008:496–504.
  • Nel AE. Implementation of alternative test strategies for the safety assessment of engineered nanomaterials. J Intern Med. 2013;274:561–577. doi:10.1111/joim.12109
  • Fadeel B, Farcal L, Hardy B, et al. Advanced tools for the safety assessment of nanomaterials. Nat Nanotechnol. 2018;13:537–543. doi:10.1038/s41565-018-0185-0
  • Romeo D, Salieri B, Hischier R, Nowack B, Wick P. An integrated pathway based on in vitro data for the human hazard assessment of nanomaterials. Environ Int. 2020;137:105505. doi:10.1016/j.envint.2020.105505
  • Gioria S, Caputo F, Urbán P, et al. Are existing standard methods suitable for the evaluation of nanomedicines: some case studies. Nanomedicine. 2018;13:539–554. doi:10.2217/nnm-2017-0338
  • Mirshafiee V, Jiang W, Sun B, Wang X, Xia T. Facilitating translational nanomedicine via predictive safety assessment. Mol Ther. 2017;25:1522–1530. doi:10.1016/j.ymthe.2017.03.011
  • Quarta A, Piccirillo C, Mandriota G, Di Corato R. Nanoheterostructures (NHS) and their applications in nanomedicine: focusing on in vivo studies. Materials (Basel). 2019;12:1–37. doi:10.3390/ma12010139
  • Sukhova GK, Williams JK, Libby P. Statins reduce inflammation in atheroma of nonhuman primates independent of effects on serum cholesterol. Arterioscler Thromb Vasc Biol. 2002;22:1452–1458. doi:10.1161/01.ATV.0000030360.72503.56
  • Cicha I, Chauvierre C, Texier I, et al. From design to the clinic: practical guidelines for translating cardiovascular nanomedicine. Cardiovasc. Res. 2018;114:1714–1727. doi:10.1093/cvr/cvy219
  • Serra A, Fratello M, Cattelani L, et al. Transcriptomics in toxicogenomics, part III: data modelling for risk assessment. Nanomaterials. 2020;10:1–26. doi:10.3390/nano10040708
  • Dutta A, Dubey T, Singh KK, Anand A. SpliceVec: distributed feature representations for splice junction prediction. Comput Biol Chem. 2018;74:434–441. doi:10.1016/j.compbiolchem.2018.03.009
  • Furxhi I, Murphy F, Mullins M, Arvanitis A, Poland CA. Practices and trends of machine learning application in nanotoxicology. Nanomaterials. 2020;10:1–32. doi:10.3390/nano10010116
  • Thomas DG, Gaheen S, Harper SL, et al. ISA-TAB-nano: a specification for sharing nanomaterial research data in spreadsheet-based format. BMC Biotechnol. 2013;13:2. doi:10.1186/1472-6750-13-2
  • Eriksson L, Johansson E. Multivariate design and modeling in QSAR. Chemom Intell Lab Syst. 1996;34:1–19. doi:10.1016/0169-7439(96)00023-8
  • Horev-Azaria L, Kirkpatrick CJ, Korenstein R, et al. Predictive toxicology of cobalt nanoparticles and ions: comparative in vitro study of different cellular models using methods of knowledge discovery from data. Toxicol. Sci. 2011;122:489–501. doi:10.1093/toxsci/kfr124
  • Gajewicz A, Puzyn T, Odziomek K, et al. Decision tree models to classify nanomaterials according to the DF4nanoGrouping scheme. Nanotoxicology. 2018;12:1–17. doi:10.1080/17435390.2017.1415388
  • Hund-Rinke K, Herrchen M, Schlich K, Schwirn K, Völker D. Test strategy for assessing the risks of nanomaterials in the environment considering general regulatory procedures. Environ Sci Eur. 2015;27:1–12. doi:10.1186/s12302-015-0053-6
  • Gioria S, et al. Are existing standard methods suitable for the evaluation of nanomedicines: some case studies. In: Nanomedicine. Vol. 13. 2018:539–554.
  • You DJ, Lee HY, Bonner JC. Macrophages: first innate immune responders to nanomaterials. In: Molecular and Integrative Toxicology. Springer Science+Business Media B.V; 2020:15–34. doi:10.1007/978-3-030-33962-3_2
  • Zhang T, Gaffrey MJ, Qian WJ, Thrall BD. Oxidative stress and redox modifications in nanomaterial–cellular interactions. In: Molecular and Integrative Toxicology. Springer Science+Business Media B.V; 2020:127–148. doi:10.1007/978-3-030-33962-3_8
  • Zhu M, Nie G, Meng H, et al. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res. 2013;46:622–631. doi:10.1021/ar300031y
  • Hou WC, Westerhoff P, Posner JD. Biological accumulation of engineered nanomaterials: a review of current knowledge. Environmental Sciences: Processes and Impacts. 2013;15:103–122.
  • Zhu M, Perrett S, Nie G. Understanding the particokinetics of engineered nanomaterials for safe and effective therapeutic applications. Small. 2013;9:1619–1634. doi:10.1002/smll.201201630
  • Zamay GS, Zamay TN, Lukyanenko KA, Kichkailo AS. Aptamers increase biocompatibility and reduce the toxicity of magnetic nanoparticles used in biomedicine. Biomedicines. 2020;8:59. doi:10.3390/biomedicines8030059
  • Lundqvist M, Stigler J, Elia G, et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U. S. A. 2008;105:14265–14270. doi:10.1073/pnas.0805135105
  • Gatoo MA, Naseem S, Arfat MY, et al. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int. 2014;2014:1–8. doi:10.1155/2014/498420
  • Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science (80-). 2006;311:622–627. doi:10.1126/science.1114397
  • Xia T, Kovochich M, Brant J, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–1807. doi:10.1021/nl061025k
  • Suen WLL, Chau Y. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells. J Pharm Pharmacol. 2014;66:564–573. doi:10.1111/jphp.12134
  • Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3:145–150. doi:10.1038/nnano.2008.30
  • Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surfaces B Biointerfaces. 2008;66:274–280. doi:10.1016/j.colsurfb.2008.07.004
  • Hoshino A, Fujioka K, Oku T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 2004;4:2163–2169. doi:10.1021/nl048715d
  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem. 2004;15:897–900. doi:10.1021/bc049951i
  • Saxena RK, Williams W, Mcgee JK, et al. Enhanced in vitro and in vivo toxicity of poly-dispersed acid-functionalized single-wall carbon nanotubes. Nanotoxicology. 2007;1:291–300. doi:10.1080/17435390701803110
  • Pietroiusti A, Massimiani M, Fenoglio I, et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano. 2011;5:4624–4633. doi:10.1021/nn200372g
  • Gurr JR, Wang ASS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213:66–73. doi:10.1016/j.tox.2005.05.007
  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem. 2008;27:1972–1978. doi:10.1897/08-002.1
  • Sharifi S, et al. Toxicity of nanomaterials. Chem Soc Rev. 2016;41:2323–2343.
  • Halamoda-Kenzaoui B, Holzwarth U, Roebben G, Bogni A, Bremer-Hoffmann S. Mapping of the available standards against the regulatory needs for nanomedicines. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology. 2019;11:e1531. doi:10.1002/wnan.1531
  • Patel K, Patel J, Patel M, Rajput G, Patel H. Introduction to hyphenated techniques and their applications in pharmacy. Pharm Methods. 2010;1:2. doi:10.4103/2229-4708.72222
  • Clogston JD, Hackley VA, Prina-Mello A, et al. Sizing up the next generation of nanomedicines. Pharm Res. 2020;37. doi: 10.1007/s11095-019-2736-y
  • Hole P. Particle Tracking Analysis (PTA). In: Characterization of Nanoparticles: Measurement Processes for Nanoparticles. Elsevier; 2019:79–96. doi:10.1016/B978-0-12-814182-3.00007-9
  • Hu Y, Crist RM, Clogston JD. The utility of asymmetric flow field-flow fractionation for preclinical characterization of nanomedicines. Anal Bioanal Chem. 2020;412:425–438. doi:10.1007/s00216-019-02252-9
  • Sahin E, Roberts CJ. Size-exclusion chromatography with multi-angle light scattering for elucidating protein aggregation mechanisms. Methods Mol Biol. 2012;899:403–423.
  • Klein M, Menta M, Dacoba TG, et al. Advanced nanomedicine characterization by DLS and AF4-UV-MALS: application to a HIV nanovaccine. J. Pharm. Biomed. Anal. 2020;179:113017. doi:10.1016/j.jpba.2019.113017
  • Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27:796–810. doi:10.1007/s11095-010-0073-2
  • Gruia F, Parupudi A, Polozova A. Practical considerations for detection and characterization of sub-micron particles in protein solutions by nanoparticle tracking analysis. PDA J Pharm Sci Technol. 2015;69:427–439. doi:10.5731/pdajpst.2015.01051
  • Zattoni A, Rambaldi DC, Reschiglian P, et al. Asymmetrical flow field-flow fractionation with multi-angle light scattering detection for the analysis of structured nanoparticles. J Chromatogr A. 2009;1216:9106–9112. doi:10.1016/j.chroma.2009.06.037
  • Chamieh J, Cottet H. Size-based characterisation of nanomaterials by Taylor dispersion analysis. In: Colloid and Interface Science in Pharmaceutical Research and Development. 2014. doi:10.1016/B978-0-444-62614-1.00009-0
  • Chamieh J, Leclercq L, Martin M, et al. Limits in size of taylor dispersion analysis: representation of the different hydrodynamic regimes and application to the size-characterization of cubosomes. Anal. Chem. 2017;89(24):13487–13493. doi:10.1021/acs.analchem.7b03806
  • Cottet H, Biron JP, Martin M. Taylor dispersion analysis of mixtures. Anal. Chem. 2007;79(23):9066–9073. doi:10.1021/ac071018w
  • Urban DA, Milosevic AM, Bossert D, et al. Taylor dispersion of inorganic nanoparticles and comparison to dynamic light scattering and transmission electron microscopy. Colloids Interface Sci. Commun. 2018;22:29–33. doi:10.1016/j.colcom.2017.12.001
  • Hulse WL, Gray J, Forbes RT. Evaluating the inter and intra batch variability of protein aggregation behaviour using Taylor dispersion analysis and dynamic light scattering. Int. J. Pharm. 2013;453(2):351–357. doi:10.1016/j.ijpharm.2013.05.062
  • Weatherall E, Willmott GR. Applications of tunable resistive pulse sensing. Analyst. 2015;140(10):3318–3334. doi:10.1039/c4an02270j
  • Pal AK, Aalaei I, Gadde S, et al. High resolution characterization of engineered nanomaterial dispersions in complex media using tunable resistive pulse sensing technology. ACS Nano. 2014;8(9):9003–9015. doi:10.1021/nn502219q
  • Pei Y, Vogel R, Minelli C. Tunable resistive pulse sensing (TRPS). In: Characterization of Nanoparticles: Measurement Processes for Nanoparticles. 2019. doi:10.1016/B978-0-12-814182-3.00009-2
  • Mørk M, Pedersen S, Botha J, Lund SM, Kristensen SR. Preanalytical, analytical, and biological variation of blood plasma submicron particle levels measured with nanoparticle tracking analysis and tunable resistive pulse sensing. Scand. J. Clin. Lab. Invest. 2016;76(5):349–360. doi:10.1080/00365513.2016.1178801
  • Su QP, et al. CTCF-mediated chromatin structures dictate the spatiotemporal propagation of replication foci. bioRxiv. 2019. doi:10.1101/525915
  • Pentyala S, Muller J, Tumillo T, et al. A novel point-of-care biomarker recognition method: validation by detecting marker for diabetic nephropathy. Diagnostics. 2015;5:177–188. doi:10.3390/diagnostics5020177
  • Guzman JMCC, Hsu SM, Chuang HS. Colorimetric diagnostic capillary enabled by size sieving in a porous hydrogel. Biosensors. 2020;10(10):130. doi:10.3390/bios10100130
  • Nelemans LC, Gurevich L. Drug delivery with polymeric nanocarriers-cellular uptake mechanisms. Materials (Basel). 2020;13:1–21. doi:10.3390/ma13020366
  • Dvornikov A, Malacrida L, Gratton E. The diver microscope for imaging in scattering media. Methods Protoc. 2019;2:1–12. doi:10.3390/mps2020053
  • El-Hamadi M, Schätzlein AG. Nanoparticles in medical imaging. Fundam Pharm Nanosci. 2013;6:543–566.
  • Herranz F, Almarza E, Rodríguez I, et al. The application of nanoparticles in gene therapy and magnetic resonance imaging. Microsc. Res. Tech. 2011;74:577–591. doi:10.1002/jemt.20992
  • Sohal IS, O’Fallon KS, Gaines P, Demokritou P, Bello D. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Part Fibre Toxicol. 2018;15. doi:10.1186/s12989-018-0265-1
  • Kermanizadeh A, Pojana G, Gaiser BK, et al. In vitro assessment of engineered nanomaterials using a hepatocyte cell line: cytotoxicity, pro-inflammatory cytokines and functional markers. Nanotoxicology. 2013;7:301–313. doi:10.3109/17435390.2011.653416
  • Applications B, Pirzada M, Altintas Z. Nanomaterials for Healthcare. Sensors. 2019;19:5311–5367. doi:10.3390/s19235311
  • Holzinger M, Goff Le A, Cosnier S. Nanomaterials for biosensing applications: a review. Front Chem. 2014;2:1–10. doi:10.3389/fchem.2014.00063
  • Shi J, Votruba AR, Farokhzad OC, et al. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10:3223–3230. doi:10.1021/nl102184c
  • Mohammadi MR, Nojoomi A, Mozafari M, et al. Nanomaterials engineering for drug delivery: a hybridization approach. J Mater Chem B. 2017;5:3995–4018. doi:10.1039/C6TB03247H
  • Lim M, Badruddoza AZM, Firdous J, et al. Engineered nanodelivery systems to improve dna vaccine technologies. Pharmaceutics. 2020;12:1–29. doi:10.3390/pharmaceutics12010030
  • Chen J, Guo Z, Tian H, Chen X. Production and clinical development of nanoparticles for gene delivery. Mol Ther - Methods Clin Dev. 2016;3:16023. doi:10.1038/mtm.2016.23
  • Hasan A, Morshed M, Memic A, et al. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine. 2018;13:5637–5655. doi:10.2147/IJN.S153758
  • Fries CN, Curvino EJ, Chen J-L, et al. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat. Nanotechnol. 2020. doi:10.1038/s41565-020-0739-9
  • Semaeva E, Tenstad O, Skavland J, et al. Access to the spleen microenvironment through lymph shows local cytokine production, increased cell flux, and altered signaling of immune cells during lipopolysaccharide-induced acute inflammation. J. Immunol. 2010;184:4547–4556. doi:10.4049/jimmunol.0902049
  • Doak SH, Liu Y, Chen C. Genotoxicity and Cancer. In: Adverse Effects of Engineered Nanomaterials: Exposure, Toxicology, and Impact on Human Health. 2nd ed. Elsevier Inc; 2017:423–445. doi:10.1016/B978-0-12-809199-9.00018-5
  • Kristensen BW, Noer H, Gramsbergen JB, Zimmer J, Noraberg J. Colchicine induces apoptosis in organotypic hippocampal slice cultures. Brain Res. 2003;964:264–278. doi:10.1016/S0006-8993(02)04080-5
  • Bhatia S, Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural Polymer Drug Delivery Systems. Springer International Publishing; 2016:33–93. doi:10.1007/978-3-319-41129-3_2