567
Views
1
CrossRef citations to date
0
Altmetric
Review

Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles

, , , , , , , & ORCID Icon show all
Pages 2139-2163 | Published online: 13 May 2022

References

  • Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: a review. Artif Organs. 2021;45(11):1272–1299. doi:10.1111/aor.14027
  • Tietze R, Zaloga J, Unterweger H, et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun. 2015;468(3):463–470. doi:10.1016/j.bbrc.2015.08.022
  • Jose J, Kumar R, Harilal S, et al. Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. Environ Sci Pollut Res Int. 2020;27(16):19214–19225. doi:10.1007/s11356-019-07231-2
  • Cores J, Caranasos TG, Cheng K. Magnetically targeted stem cell delivery for regenerative medicine. J Funct Biomater. 2015;6(3):526–546. doi:10.3390/jfb6030526
  • Abdal Dayem A, Lee SB, Cho SG. The impact of metallic nanoparticles on stem cell proliferation and differentiation. Nanomaterials. 2018;8(10):10. doi:10.3390/nano8100761
  • Kumari S, Sharma N, Sahi SV. Advances in cancer therapeutics: conventional thermal therapy to nanotechnology-based photothermal therapy. Pharmaceutics. 2021;13(8):1174. doi:10.3390/pharmaceutics13081174
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi:10.1038/s41573-020-0090-8
  • Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med. 2014;55(12):1919–1922. doi:10.2967/jnumed.114.146019
  • Nam J, Won N, Bang J, et al. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv Drug Deliv Rev. 2013;65(5):622–648. doi:10.1016/j.addr.2012.08.015
  • Abarca-Cabrera L, Fraga-Garcia P, Berensmeier S. Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater Res. 2021;25(1):12. doi:10.1186/s40824-021-00212-y
  • Natarajan P, Tomich JM. Understanding the influence of experimental factors on bio-interactions of nanoparticles: towards improving correlation between in vitro and in vivo studies. Arch Biochem Biophys. 2020;694:108592. doi:10.1016/j.abb.2020.108592
  • Wolfram J, Zhu M, Yang Y, et al. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671–1681. doi:10.2174/1389450115666140804124808
  • Padmanabhan P, Kumar A, Kumar S, Chaudhary RK, Gulyas B. Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater. 2016;41:1–16. doi:10.1016/j.actbio.2016.06.003
  • Heidt T, Nahrendorf M. Multimodal iron oxide nanoparticles for hybrid biomedical imaging. NMR Biomed. 2013;26(7):756–765. doi:10.1002/nbm.2872
  • Friedrich RP, Janko C, Poettler M, et al. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods. Int J Nanomedicine. 2015;10:4185–4201. doi:10.2147/IJN.S82714
  • Gajdosechova Z, Mester Z. Recent trends in analysis of nanoparticles in biological matrices. Anal Bioanal Chem. 2019;411(19):4277–4292. doi:10.1007/s00216-019-01620-9
  • Rad AM, Janic B, Iskander AS, Soltanian-Zadeh H, Arbab AS. Measurement of quantity of iron in magnetically labeled cells: comparison among different UV/VIS spectrometric methods. BioTechniques. 2007;43(5):627–628, 630, 632 passim. doi:10.2144/000112599
  • Wiekhorst F, Steinhoff U, Eberbeck D, Trahms L. Magnetorelaxometry assisting biomedical applications of magnetic nanoparticles. Pharm Res. 2012;29(5):1189–1202. doi:10.1007/s11095-011-0630-3
  • Dadashzadeh ER, Hobson M, Henry Bryant L Jr, Dean DD, Frank JA. Rapid spectrophotometric technique for quantifying iron in cells labeled with superparamagnetic iron oxide nanoparticles: potential translation to the clinic. Contrast Media Mol Imaging. 2013;8(1):50–56. doi:10.1002/cmmi.1493
  • Poller JM, Zaloga J, Schreiber E, et al. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake. Int J Nanomedicine. 2017;12:3207–3220. doi:10.2147/IJN.S132369
  • Mayhew TM, Muhlfeld C, Vanhecke D, Ochs M. A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs. Ann Anat. 2009;191(2):153–170. doi:10.1016/j.aanat.2008.11.001
  • Stender AS, Marchuk K, Liu C, et al. Single cell optical imaging and spectroscopy. Chem Rev. 2013;113(4):2469–2527. doi:10.1021/cr300336e
  • Gunn J, Paranji RK, Zhang M. A simple and highly sensitive method for magnetic nanoparticle quantitation using 1H-NMR spectroscopy. Biophys J. 2009;97(9):2640–2647. doi:10.1016/j.bpj.2009.08.013
  • Kurokawa K, Nakano A. Live-cell Imaging by Super-resolution Confocal Live Imaging Microscopy (SCLIM): simultaneous three-color and four-dimensional live cell imaging with high space and time resolution. Bio Protoc. 2020;10(17):e3732. doi:10.21769/BioProtoc.3732
  • Feng H, Wang X, Xu Z, Zhang X, Gao Y. Super-resolution fluorescence microscopy for single cell imaging. Adv Exp Med Biol. 2018;1068:59–71.
  • Igarashi M, Nozumi M, Wu LG, et al. New observations in neuroscience using superresolution microscopy. J Neurosci. 2018;38(44):9459–9467. doi:10.1523/JNEUROSCI.1678-18.2018
  • Yin L, Wang W, Wang S, Zhang F, Zhang S, Tao N. How does fluorescent labeling affect the binding kinetics of proteins with intact cells? Biosens Bioelectron. 2015;66:412–416. doi:10.1016/j.bios.2014.11.036
  • Ostrowski A, Nordmeyer D, Boreham A, et al. Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J Nanotechnol. 2015;6:263–280. doi:10.3762/bjnano.6.25
  • Wu Y, Ali MRK, Chen K, Fang N, El-Sayed MA. Gold nanoparticles in biological optical imaging. Nano Today. 2019;24:120–140. doi:10.1016/j.nantod.2018.12.006
  • Wang W. Imaging the chemical activity of single nanoparticles with optical microscopy. Chem Soc Rev. 2018;47(7):2485–2508. doi:10.1039/C7CS00451F
  • Fakhrullin R, Nigamatzyanova L, Fakhrullina G. Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research. Sci Total Environ. 2021;772:145478. doi:10.1016/j.scitotenv.2021.145478
  • Mehta N, Sahu SP, Shaik S, Devireddy R, Gartia MR. Dark-field hyperspectral imaging for label free detection of nano-bio-materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(1):e1661. doi:10.1002/wnan.1661
  • Friedrich RP, Schreiber E, Tietze R, Yang H, Pilarsky C, Alexiou C. Intracellular quantification and localization of label-free iron oxide nanoparticles by holotomographic microscopy. Nanotechnol Sci Appl. 2020;13:119–130. doi:10.2147/NSA.S282204
  • Gaspar I, Szabad J. In vivo analysis of MT-based vesicle transport by confocal reflection microscopy. Cell Motil Cytoskeleton. 2009;66(2):68–79. doi:10.1002/cm.20334
  • Pimenta R, Soares-de-almeida L, Arzberger E, et al. Reflectance confocal microscopy for the diagnosis of skin infections and infestations. Dermatol Online J. 2020;26(3):1.
  • Calzavara-Pinton P, Longo C, Venturini M, Sala R, Pellacani G. Reflectance confocal microscopy for in vivo skin imaging. Photochem Photobiol. 2008;84(6):1421–1430. doi:10.1111/j.1751-1097.2008.00443.x
  • White WM, Baldassano M, Rajadhyaksha M, et al. Confocal reflectance imaging of head and neck surgical specimens. A comparison with histologic analysis. Arch Otolaryngol Head Neck Surg. 2004;130(8):923–928. doi:10.1001/archotol.130.8.923
  • Guggenheim EJ, Lynch I, Rappoport JZ. Imaging in focus: reflected light imaging: techniques and applications. Int J Biochem Cell Biol. 2017;83:65–70. doi:10.1016/j.biocel.2016.12.008
  • Dunn AK, Smithpeter C, Welch AJ, Richards-Kortum R. Sources of contrast in confocal reflectance imaging. Appl Opt. 1996;35(19):3441–3446. doi:10.1364/AO.35.003441
  • Zhang LW, Monteiro-Riviere NA. Use of confocal microscopy for nanoparticle drug delivery through skin. J Biomed Opt. 2013;18(6):061214. doi:10.1117/1.JBO.18.6.061214
  • Rajadhyaksha M, Grossman M, Esterowitz D, Webb RH, Anderson RR. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol. 1995;104(6):946–952. doi:10.1111/1523-1747.ep12606215
  • Rajadhyaksha M, Gonzalez S, Zavislan JM, Anderson RR, Webb RH. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J Invest Dermatol. 1999;113(3):293–303. doi:10.1046/j.1523-1747.1999.00690.x
  • Maitland KC, Gillenwater AM, Williams MD, El-Naggar AK, Descour MR, Richards-Kortum RR. In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope. Oral Oncol. 2008;44(11):1059–1066. doi:10.1016/j.oraloncology.2008.02.002
  • Ando Y, Sakurai T, Koida K, et al. In vivo bioluminescence and reflectance imaging of multiple organs in bioluminescence reporter mice by bundled-fiber-coupled microscopy. Biomed Opt Express. 2016;7(3):963–978. doi:10.1364/BOE.7.000963
  • Fuchs CSK, Ardigo M, Haedersdal M, Mogensen M. In vivo reflectance confocal microscopy of gold microparticles deposited in the skin. A case report on cutaneous chrysiasis. Lasers Surg Med. 2020;52(1):13–16. doi:10.1002/lsm.23179
  • Stensberg MC, Madangopal R, Yale G, et al. Silver nanoparticle-specific mitotoxicity in Daphnia magna. Nanotoxicology. 2014;8(8):833–842. doi:10.3109/17435390.2013.832430
  • Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996–9031. doi:10.7150/thno.45413
  • Tardillo Suárez V, Karepina E, Chevallet M, et al. Nuclear translocation of silver ions and hepatocyte nuclear receptor impairment upon exposure to silver nanoparticles. Environ Sci. 2020;7(5):1373–1387.
  • Wagner T, Kroll A, Haramagatti CR, Lipinski HG, Wiemann M. Classification and segmentation of nanoparticle diffusion trajectories in cellular micro environments. PLoS One. 2017;12(1):e0170165. doi:10.1371/journal.pone.0170165
  • Wagner T, Kroll A, Wiemann M, Lipinski HG. Classification of nanoparticle diffusion processes in vital cells by a multifeature random forests approach: application to simulated data, darkfield, and confocal laser scanning microscopy. Paper presented at: Proceedings of SPIE - The International Society for Optical Engineering; 2016.
  • Blumler P, Friedrich RP, Pereira J, Baun O, Alexiou C, Mailander V. Contactless nanoparticle-based guiding of cells by controllable magnetic fields. Nanotechnol Sci Appl. 2021;14:91–100. doi:10.2147/NSA.S298003
  • Friedrich RP, Zaloga J, Schreiber E, et al. Tissue plasminogen activator binding to superparamagnetic iron oxide nanoparticle-covalent versus adsorptive approach. Nanoscale Res Lett. 2016;11(1):297. doi:10.1186/s11671-016-1521-7
  • Friedrich RP, Janko C, Unterweger H, Lyer S, Alexiou C. SPIONs and magnetic hybrid materials: synthesis, toxicology and biomedical applications. Phys Sci Rev. 2021. doi:10.1515/psr-2019-0093
  • Sokolov K, Follen M, Aaron J, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003;63(9):1999–2004.
  • Kah JC, Olivo MC, Lee CG, Sheppard CJ. Molecular contrast of EGFR expression using gold nanoparticles as a reflectance-based imaging probe. Mol Cell Probes. 2008;22(1):14–23. doi:10.1016/j.mcp.2007.06.010
  • Cid-Barrio L, Ruiz Encinar J, Costa-Fernandez JM. Catalytic gold deposition for ultrasensitive optical immunosensing of prostate specific antigen. Sensors. 2020;20(18):18. doi:10.3390/s20185287
  • Mazzolini J, Weber RJ, Chen HS, et al. Protein corona modulates uptake and toxicity of nanoceria via clathrin-mediated endocytosis. Biol Bull. 2016;231(1):40–60. doi:10.1086/689590
  • Klein S, Petersen S, Taylor U, Rath D, Barcikowski S. Quantitative visualization of colloidal and intracellular gold nanoparticles by confocal microscopy. J Biomed Opt. 2010;15(3):036015. doi:10.1117/1.3461170
  • Kim CS, Li X, Jiang Y, et al. Cellular imaging of endosome entrapped small gold nanoparticles. MethodsX. 2015;2:306–315. doi:10.1016/j.mex.2015.06.001
  • Al-Zubeidi A, McCarthy LA, Rafiei-Miandashti A, Heiderscheit TS, Link S. Single-particle scattering spectroscopy: fundamentals and applications. Nanophotonics. 2021;10(6):1621–1655. doi:10.1515/nanoph-2020-0639
  • Yoshimura K, Maeda M, Kamiya N, Zako T. Protein-functionalized gold nanoparticles for antibody detection using the darkfield microscopic observation of nanoparticle aggregation. Anal Sci. 2021;37(3):507–511. doi:10.2116/analsci.20SCP12
  • Zucker RM, Ortenzio J, Degn LL, Boyes WK. Detection of large extracellular silver nanoparticle rings observed during mitosis using darkfield microscopy. PLoS One. 2020;15(12):e0240268. doi:10.1371/journal.pone.0240268
  • Gibbs-Flournoy EA, Bromberg PA, Hofer TP, Samet JM, Zucker RM. Darkfield-confocal microscopy detection of nanoscale particle internalization by human lung cells. Part Fibre Toxicol. 2011;8(1):2. doi:10.1186/1743-8977-8-2
  • Guttenberg M, Bezerra L, Neu-Baker NM, et al. Biodistribution of inhaled metal oxide nanoparticles mimicking occupational exposure: a preliminary investigation using enhanced darkfield microscopy. J Biophotonics. 2016;9(10):987–993. doi:10.1002/jbio.201600125
  • Amin MJ, Petry S, Yang H, Shaevitz JW. Uniform intensity in multifocal microscopy using a spatial light modulator. PLoS One. 2020;15(3):e0230217–e0230217. doi:10.1371/journal.pone.0230217
  • Balk M, Haus T, Band J, et al. Cellular SPION Uptake and Toxicity in Various Head and Neck Cancer Cell Lines. Nanomaterials. 2021;11(3):726. doi:10.3390/nano11030726
  • Devereux SJ, Cheung S, Daly HC, O’Shea DF, Quinn SJ. Multimodal microscopy distinguishes extracellular aggregation and cellular uptake of single-walled carbon nanohorns. Chemistry. 2018;24(53):14162–14170. doi:10.1002/chem.201801532
  • Ding C, Li C, Deng F, Simpson G. Polarization Wavefront Shaping for Quantitative Phase Contrast Imaging by axially-Offset Differential Interference Contrast (ADIC) Microscopy. Vol. 10887. SPIE; 2019.
  • Choo P, Hryn AJ, Culver KS, Bhowmik D, Hu J, Odom TW. Wavelength-dependent differential interference contrast inversion of anisotropic gold nanoparticles. J Phys Chem C Nanomater Interfaces. 2018;122(47):27024–27031. doi:10.1021/acs.jpcc.8b08995
  • Kim GW, Ha JW. Polarization-sensitive single dipoles generated from multiple sharp branches on the surfaces of single gold nanourchins. J Phys Chem C. 2017;121(36):19975–19982. doi:10.1021/acs.jpcc.7b06823
  • Lee SY, Han Y, Hong JW, Ha JW. Single gold bipyramids with sharp tips as sensitive single particle orientation sensors in biological studies. Nanoscale. 2017;9(33):12060–12067. doi:10.1039/C7NR03969G
  • Zhao F, Chen K, Dong B, Yang K, Gu Y, Fang N. Localization accuracy of gold nanoparticles in single particle orientation and rotational tracking. Opt Express. 2017;25(9):9860–9871. doi:10.1364/OE.25.009860
  • Hu J, Liu T, Choo P, et al. Single-nanoparticle orientation sensing by deep learning. ACS Cent Sci. 2020;6(12):2339–2346. doi:10.1021/acscentsci.0c01252
  • Culver KSB, Liu T, Hryn AJ, Fang N, Odom TW. In situ identification of nanoparticle structural information using optical microscopy. J Phys Chem Lett. 2018;9(11):2886–2892. doi:10.1021/acs.jpclett.8b01191
  • Kim GW, Ha JW. Single gold nanostars with multiple branches as multispectral orientation probes in single-particle rotational tracking. Chem Commun. 2021;57(26):3263–3266. doi:10.1039/D1CC00731A
  • Bhowmik D, Culver KSB, Liu T, Odom TW. Resolving single-nanoconstruct dynamics during targeting and nontargeting live-cell membrane interactions. ACS Nano. 2019;13(12):13637–13644. doi:10.1021/acsnano.9b03144
  • Roy S, Soh JH, Ying JY. A microarray platform for detecting disease-specific circulating miRNA in human serum. Biosens Bioelectron. 2016;75:238–246. doi:10.1016/j.bios.2015.08.039
  • Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254(5035):1178–1181. doi:10.1126/science.1957169
  • Iftimia N, Peterson G, Chang EW, Maguluri G, Fox W, Rajadhyaksha M. Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: an ex vivo study. J Biomed Opt. 2016;21(1):16006. doi:10.1117/1.JBO.21.1.016006
  • Xu Q, Jalilian E, Fakhoury JW, et al. Monitoring the topical delivery of ultrasmall gold nanoparticles using optical coherence tomography. Skin Res Technol. 2020;26(2):263–268. doi:10.1111/srt.12789
  • Coughlin AJ, Ananta JS, Deng N, Larina IV, Decuzzi P, West JL. Gadolinium-conjugated gold nanoshells for multimodal diagnostic imaging and photothermal cancer therapy. Small. 2014;10(3):556–565. doi:10.1002/smll.201302217
  • Tucker-Schwartz JM, Beavers KR, Sit WW, Shah AT, Duvall CL, Skala MC. In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography. Biomed Opt Express. 2014;5(6):1731–1743. doi:10.1364/BOE.5.001731
  • Nguyen VP, Qian W, Li Y, et al. Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging. Nat Commun. 2021;12(1):34. doi:10.1038/s41467-020-20276-z
  • Marin R, Lifante J, Vazquez Besteiro L, et al. Plasmonic copper sulfide nanoparticles enable dark contrast in optical coherence tomography. Adv Healthcare Mater. 2020;9(5):1901627. doi:10.1002/adhm.201901627
  • Kumar A, Mondal I, Roy P, Poddar R. TiO2 nanoparticles as exogenous contrast agent for 1 μm swept source optical coherence tomography: an in vitro study. Laser Phys. 2018;28:035601. doi:10.1088/1555-6611/aa9cc9
  • Seeni RZ, Yu X, Chang H, Chen P, Liu L, Xu C. Iron oxide nanoparticle-powered micro-optical coherence tomography for in situ imaging the penetration and swelling of polymeric microneedles in the skin. ACS Appl Mater Interfaces. 2017;9(24):20340–20347. doi:10.1021/acsami.7b00481
  • Cimalla P, Werner T, Winkler K, et al. Imaging of nanoparticle-labeled stem cells using magnetomotive optical coherence tomography, laser speckle reflectometry, and light microscopy. J Biomed Opt. 2015;20(3):036018. doi:10.1117/1.JBO.20.3.036018
  • Hu J, Rivero F, Torres RA, et al. Dynamic single gold nanoparticle visualization by clinical intracoronary optical coherence tomography. J Biophotonics. 2017;10(5):674–682. doi:10.1002/jbio.201600062
  • Adhikari S, Spaeth P, Kar A, Baaske MD, Khatua S, Orrit M. Photothermal microscopy: imaging the optical absorption of single nanoparticles and single molecules. ACS Nano. 2020;14(12):16414–16445. doi:10.1021/acsnano.0c07638
  • Vermeulen P, Cognet L, Lounis B. Photothermal microscopy: optical detection of small absorbers in scattering environments. J Microsc. 2014;254(3):115–121. doi:10.1111/jmi.12130
  • Chien MH, Brameshuber M, Rossboth BK, Schutz GJ, Schmid S. Single-molecule optical absorption imaging by nanomechanical photothermal sensing. Proc Natl Acad Sci U S A. 2018;115(44):11150–11155. doi:10.1073/pnas.1804174115
  • Zahedian M, Lee Z, Koh ES, Dragnea B. Studies of nanoparticle-assisted photoannealing of polydimethylsiloxane by time-harmonic photothermal microscopy. ACS Photonics. 2020;7(9):2601–2609.
  • Boyer D, Tamarat P, Maali A, Lounis B, Orrit M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science. 2002;297(5584):1160–1163. doi:10.1126/science.1073765
  • Spaeth P, Adhikari S, Le L, et al. Circular Dichroism measurement of single metal nanoparticles using photothermal imaging. Nano Lett. 2019;19(12):8934–8940. doi:10.1021/acs.nanolett.9b03853
  • Shi Z, Tian X, Luo Z, Huang R, Wu L, Li Q. Photothermal imaging of individual nano-objects with large scattering cross sections. J Phys Chem A. 2020;124(8):1659–1665. doi:10.1021/acs.jpca.9b11382
  • Li Q, Shi Z, Wu L, Wei H. Resonant scattering-enhanced photothermal microscopy. Nanoscale. 2020;12(15):8397–8403. doi:10.1039/C9NR10893A
  • Shokoufi N, Abbasgholi Nejad Asbaghi B, Abbasi-Ahd A. Microfluidic chip-photothermal lens microscopy for DNA hybridization assay using gold nanoparticles. Anal Bioanal Chem. 2019;411(23):6119–6128. doi:10.1007/s00216-019-01999-5
  • Mathurin J, Pancani E, Deniset-Besseau A, et al. How to unravel the chemical structure and component localization of individual drug-loaded polymeric nanoparticles by using tapping AFM-IR. Analyst. 2018;143(24):5940–5949. doi:10.1039/C8AN01239C
  • Zhang Y, Yurdakul C, Devaux AJ, et al. Vibrational spectroscopic detection of a single virus by mid-infrared photothermal microscopy. Anal Chem. 2021;93(8):4100–4107. doi:10.1021/acs.analchem.0c05333
  • Gao H, Wu P, Song P, Kang B, Xu JJ, Chen HY. The video-rate imaging of sub-10 nm plasmonic nanoparticles in a cellular medium free of background scattering. Chem Sci. 2021;12(8):3017–3024. doi:10.1039/D0SC04764C
  • Wang G, Li Z, Luo X, Yue R, Shen Y, Ma N. DNA-templated nanoparticle complexes for photothermal imaging and labeling of cancer cells. Nanoscale. 2018;10(35):16508–16520. doi:10.1039/C8NR03503B
  • Nedosekin DA, Galanzha EI, Dervishi E, Biris AS, Zharov VP. Super-resolution nonlinear photothermal microscopy. Small. 2014;10(1):135–142. doi:10.1002/smll.201300024
  • Bijeesh MM, Shakhi PK, Arunkarthick S, Varier GK, Nandakumar P. Confocal imaging of single BaTiO3 nanoparticles by two-photon photothermal microscopy. Sci Rep. 2017;7(1):1643. doi:10.1038/s41598-017-01548-z
  • Darrigues E, Nima ZA, Nedosekin DA, et al. Tracking gold nanorods’ interaction with large 3D pancreatic-stromal tumor spheroids by multimodal imaging: fluorescence, photoacoustic, and photothermal microscopies. Sci Rep. 2020;10(1):3362. doi:10.1038/s41598-020-59226-6
  • Chang M, Wang M, Shu M, et al. Enhanced photoconversion performance of NdVO4/Au nanocrystals for photothermal/photoacoustic imaging guided and near infrared light-triggered anticancer phototherapy. Acta Biomater. 2019;99:295–306. doi:10.1016/j.actbio.2019.08.026
  • Flewellen JL, Zaid IM, Berry RM. A multi-mode digital holographic microscope. Rev Sci Instrum. 2019;90(2):023705. doi:10.1063/1.5066556
  • Abbasian V, Akhlaghi EA, Charsooghi MA, Bazzar M, Moradi AR. Digital holographic microscopy for 3D surface characterization of polymeric nanocomposites. Ultramicroscopy. 2018;185:72–80. doi:10.1016/j.ultramic.2017.11.013
  • Midtvedt B, Olsen E, Eklund F, et al. Fast and accurate nanoparticle characterization using deep-learning-enhanced off-axis holography. ACS Nano. 2021;15(2):2240–2250. doi:10.1021/acsnano.0c06902
  • Kim D, Lee S, Lee M, Oh J, Yang SA, Park Y. Holotomography: refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging. Adv Exp Med Biol. 2021;1310:211–238.
  • Leith EN, Upatnieks J. Reconstructed wavefronts and communication theory*. J Opt Soc Am. 1962;52(10):1123–1130. doi:10.1364/JOSA.52.001123
  • Lee SH, Roichman Y, Yi GR, et al. Characterizing and tracking single colloidal particles with video holographic microscopy. Opt Express. 2007;15(26):18275–18282. doi:10.1364/OE.15.018275
  • Liebel M, Pazos-Perez N, van Hulst NF, Alvarez-Puebla RA. Surface-enhanced Raman scattering holography. Nat Nanotechnol. 2020;15(12):1005–1011. doi:10.1038/s41565-020-0771-9
  • Liebel M, Valduga de Almeida Camargo F, Cerullo G, Hulst N. Widefield phototransient imaging for visualizing 3D motion of resonant particles in scattering environments; 2021.
  • Liebel M, Camargo FVA, Cerullo G, van Hulst NF. Ultrafast transient holographic microscopy. Nano Lett. 2021;21(4):1666–1671. doi:10.1021/acs.nanolett.0c04416
  • Kalies S, Antonopoulos GC, Rakoski MS, et al. Investigation of biophysical mechanisms in gold nanoparticle mediated laser manipulation of cells using a multimodal holographic and fluorescence imaging setup. PLoS One. 2015;10(4):e0124052. doi:10.1371/journal.pone.0124052
  • Narayanaswamy R, Torchilin VP. Targeted delivery of combination therapeutics using monoclonal antibody 2C5-modified immunoliposomes for cancer therapy. Pharm Res. 2021;38(3):429–450. doi:10.1007/s11095-021-02986-1
  • Geloen A, Isaieva K, Isaiev M, Levinson O, Berger E, Lysenko V. Intracellular detection and localization of nanoparticles by refractive index measurement. Sensors. 2021;21(15):15. doi:10.3390/s21155001
  • Lemaster JE, Jokerst JV. What is new in nanoparticle-based photoacoustic imaging? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(1). doi:10.1002/wnan.1404
  • Zhang Y, Hong H, Cai W. Photoacoustic imaging. Cold Spring Harb Protoc. 2011;2011(9):pdb.top065508. doi:10.1101/pdb.top065508
  • Park EY, Oh D, Park S, Kim W, Kim C. New contrast agents for photoacoustic imaging and theranostics: recent 5-year overview on phthalocyanine/naphthalocyanine-based nanoparticles. APL Bioeng. 2021;5(3):031510. doi:10.1063/5.0047660
  • Ma Y, Xu L, Yin B, et al. Ratiometric semiconducting polymer nanoparticle for reliable photoacoustic imaging of pneumonia-induced vulnerable atherosclerotic plaque in vivo. Nano Lett. 2021;21(10):4484–4493. doi:10.1021/acs.nanolett.1c01359
  • Wang Y, Fadhel MN, Hysi E, Pastenak M, Sathiyamoorthy K, Kolios MC. In vivo spectroscopic photoacoustic imaging and laser-induced nanoparticle vaporization for anti-HER2 breast cancer. J Biophotonics. 2021;14(10):e202100099. doi:10.1002/jbio.202100099
  • Fu J, Wu Q, Dang Y, et al. Synergistic therapy using doxorubicin-loading and nitric oxide-generating hollow Prussian blue nanoparticles with photoacoustic imaging potential against breast cancer. Int J Nanomedicine. 2021;16:6003–6016. doi:10.2147/IJN.S327598
  • St Lorenz A, Buabeng ER, Taratula O, Taratula O, Henary M. Near-infrared heptamethine cyanine dyes for nanoparticle-based photoacoustic imaging and photothermal therapy. J Med Chem. 2021;64(12):8798–8805. doi:10.1021/acs.jmedchem.1c00771
  • Wang S, Zhang L, Zhao J, He M, Huang Y, Zhao S. A tumor microenvironment-induced absorption red-shifted polymer nanoparticle for simultaneously activated photoacoustic imaging and photothermal therapy. Sci Adv. 2021;7:12.
  • Zhang LP, Kang L, Li X, Liu S, Liu T, Zhao Y. Pyrazino[2,3-g]quinoxaline-based nanoparticles as near-infrared phototheranostic agents for efficient photoacoustic-imaging-guided photothermal therapy. ACS Appl Nano Mater. 2021;4(2):2019–2029. doi:10.1021/acsanm.0c03346
  • Ouyang Z, Li D, Xiong Z, et al. Antifouling dendrimer-entrapped copper sulfide nanoparticles enable photoacoustic imaging-guided targeted combination therapy of tumors and tumor metastasis. ACS Appl Mater Interfaces. 2021;13(5):6069–6080. doi:10.1021/acsami.0c21620
  • Xu Y, Sun G, Middha E, et al. Organic nanoparticle-doped microdroplets as dual-modality contrast agents for ultrasound microvascular flow and photoacoustic imaging. Sci Rep. 2020;10(1):17009. doi:10.1038/s41598-020-72795-w
  • Miao Y, Gu C, Yu B, et al. Conjugated-polymer-based nanoparticles with efficient NIR-II fluorescent, photoacoustic and photothermal performance. Chembiochem. 2019;20(21):2793–2799. doi:10.1002/cbic.201900309
  • Li H, Shi S, Wu M, et al. iRGD peptide-mediated liposomal nanoparticles with photoacoustic/ultrasound dual-modality imaging for precision theranostics against hepatocellular carcinoma. Int J Nanomedicine. 2021;16:6455–6475. doi:10.2147/IJN.S325891
  • Byrne GD, Pitter MC, Zhang J, Falcone FH, Stolnik S, Somekh MG. Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles. J Microsc. 2008;231(Pt 1):168–179. doi:10.1111/j.1365-2818.2008.02027.x
  • Prieve DC, Frej NA. Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces. Langmuir. 1990;6(2):396–403. doi:10.1021/la00092a019
  • Temple PA. Total internal reflection microscopy: a surface inspection technique. Appl Opt. 1981;20(15):2656–2664. doi:10.1364/AO.20.002656
  • Byrne GD, Vllasaliu D, Falcone FH, Somekh MG, Stolnik S. Live imaging of cellular internalization of single colloidal particle by combined label-free and fluorescence total internal reflection microscopy. Mol Pharm. 2015;12(11):3862–3870. doi:10.1021/acs.molpharmaceut.5b00215
  • Chakkarapani SK, Zhang P, Ahn S, Kang SH. Total internal reflection plasmonic scattering-based fluorescence-free nanoimmunosensor probe for ultra-sensitive detection of cancer antigen 125. Biosens Bioelectron. 2016;81:23–31. doi:10.1016/j.bios.2016.01.094
  • Braslavsky I, Amit R, Jaffar Ali BM, Gileadi O, Oppenheim A, Stavans J. Objective-type dark-field illumination for scattering from microbeads. Appl Opt. 2001;40(31):5650–5657. doi:10.1364/AO.40.005650
  • Nan X, Sims PA, Xie XS. Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. Chemphyschem. 2008;9(5):707–712. doi:10.1002/cphc.200700839
  • Mickolajczyk KJ, Hancock WO. High-resolution single-molecule kinesin assays at kHz frame rates. Methods Mol Biol. 2018;1805:123–138.
  • Ueno H, Nishikawa S, Iino R, et al. Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys J. 2010;98(9):2014–2023. doi:10.1016/j.bpj.2010.01.011
  • Ryu KR, Kim GW, Ha JW. Localized surface plasmon resonance inflection points for improved detection of chemisorption of 1-alkanethiols under total internal reflection scattering microscopy. Sci Rep. 2021;11(1):12902. doi:10.1038/s41598-021-92410-w
  • Xia W, Ling B, Wang L, Gao F, Chen H. A near-infrared upconversion luminescence total internal reflection platform for quantitative image analysis. Chem Commun. 2020;56(60):8440–8443. doi:10.1039/D0CC03119D
  • Jiang L, Sun X, Liu H, et al. Label-free imaging of single nanoparticles using total internal reflection-based leakage radiation microscopy. Nanomaterials. 2020;10(4):615. doi:10.3390/nano10040615
  • Li M, Yuan T, Jiang Y, et al. Total internal reflection-based extinction spectroscopy of single nanoparticles. Angew Chem Int Ed Engl. 2019;58(2):572–576. doi:10.1002/anie.201810324
  • Andrén D, Odebo Länk N, Šípová-jungová H, Jones S, Johansson P, Käll M. Surface interactions of gold nanoparticles optically trapped against an interface. J Phys Chem C. 2019;123(26):16406–16414. doi:10.1021/acs.jpcc.9b05438
  • Jones S, Andrén D, Karpinski P, Käll M. Photothermal heating of plasmonic nanoantennas: influence on trapped particle dynamics and colloid distribution. ACS Photonics. 2018;5(7):2878–2887. doi:10.1021/acsphotonics.8b00231
  • Lal S, Link S, Halas NJ. Nano-optics from sensing to waveguiding. Nat Photonics. 2007;1(11):641–648. doi:10.1038/nphoton.2007.223
  • Truong PL, Ma X, Sim SJ. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes. Nanoscale. 2014;6(4):2307–2315. doi:10.1039/c3nr05211g
  • Ringe E, Sharma B, Henry A-I, Marks LD, Van Duyne RP. Single nanoparticle plasmonics. Phys Chem Chem Phys. 2013;15(12):4110–4129. doi:10.1039/c3cp44574g
  • Bohren CF, Huffman DR. Absorption and Scattering of Light by Small Particles. John Wiley & Sons; 2008.
  • Ma J, Wang X, Feng J, Huang C, Fan Z. Individual plasmonic nanoprobes for biosensing and bioimaging: recent advances and perspectives. Small. 2021;17(8):e2004287. doi:10.1002/smll.202004287
  • Lee S, Sun Y, Cao Y, Kang SH. Plasmonic nanostructure-based bioimaging and detection techniques at the single-cell level. Trends Anal Chem. 2019;117:58–68. doi:10.1016/j.trac.2019.05.006
  • Shang J, Yang Q, Fan W, et al. Probing dynamic features of phagosome maturation in macrophage using Au@MnOx @SiO2 nanoparticles as pH-sensitive plasmonic nanoprobes. Chem Asian J. 2021;16(9):1150–1156. doi:10.1002/asia.202100031
  • Ghotra G, Le NH, Hayder H, Peng C, Chen JIL. Multiplexed and single-cell detection of microRNA with plasmonic nanoparticle assemblies. Can J Chem. 2021;99(7):585–593. doi:10.1139/cjc-2021-0023
  • Wang L, Darviot C, Zapata-Farfan J, Patskovsky S, Trudel D, Meunier M. Designable nanoplasmonic biomarkers for direct microscopy cytopathology diagnostics. J Biophotonics. 2019;12(11):e201900166. doi:10.1002/jbio.201900166
  • Ge F, Xue J, Wang Z, Xiong B, He Y. Real-time observation of dynamic heterogeneity of gold nanorods on plasma membrane with darkfield microscopy. Sci China Chem. 2019;62(8):1072–1081. doi:10.1007/s11426-019-9444-9
  • El-Kurdi R, Patra D. Gold and silver nanoparticles in resonance Rayleigh scattering techniques for chemical sensing and biosensing: a review. Mikrochim Acta. 2019;186(10):667. doi:10.1007/s00604-019-3755-4
  • Song MS, Choi SP, Lee J, Kwon YJ, Sim SJ. Real-time, sensitive, and specific detection of promoter-polymerase interactions in gene transcription using a nanoplasmonic sensor. Adv Mater. 2013;25(9):1265–1269. doi:10.1002/adma.201203467
  • Truong PL, Choi SP, Sim SJ. Amplification of resonant Rayleigh light scattering response using immunogold colloids for detection of lysozyme. Small. 2013;9(20):3485–3492. doi:10.1002/smll.201202638
  • Louit G, Asahi T, Tanaka G, Uwada T, Masuhara H. Spectral and 3-dimensional tracking of single gold nanoparticles in living cells studied by Rayleigh light scattering microscopy. J Phys Chem C. 2009;113(27):11766–11772. doi:10.1021/jp9018124
  • Cramer J, Vogt F, Booksh KS. 4.11 - smart sensors. In: Brown SD, Tauler R, Walczak B, editors. Comprehensive Chemometrics. Oxford: Elsevier; 2009:357–376.
  • Zamora-Perez P, Tsoutsi D, Xu R, Rivera_Gil P. Hyperspectral-enhanced dark field microscopy for single and collective nanoparticle characterization in biological environments. Materials. 2018;11(2):243. doi:10.3390/ma11020243
  • Roth GA, Tahiliani S, Neu-Baker NM, Brenner SA. Hyperspectral microscopy as an analytical tool for nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(4):565–579. doi:10.1002/wnan.1330
  • Lopez-Luna J, Cruz-Fernandez S, Mills DS, et al. Phytotoxicity and upper localization of Ag@CoFe2O4 nanoparticles in wheat plants. Environ Sci Pollut Res Int. 2020;27(2):1923–1940. doi:10.1007/s11356-019-06668-9
  • Théoret T, Wilkinson KJ. Evaluation of enhanced darkfield microscopy and hyperspectral analysis to analyse the fate of silver nanoparticles in wastewaters. Analytical Methods. 2017;9(26):3920–3928. doi:10.1039/C7AY00615B
  • Patskovsky S, Bergeron E, Rioux D, Meunier M. Wide-field hyperspectral 3D imaging of functionalized gold nanoparticles targeting cancer cells by reflected light microscopy. J Biophotonics. 2015;8(5):401–407. doi:10.1002/jbio.201400025
  • Roth GA, Sosa Pena Mdel P, Neu-Baker NM, Tahiliani S, Brenner SA. Identification of metal oxide nanoparticles in histological samples by enhanced darkfield microscopy and hyperspectral mapping. J Vis Exp. 2015;106:e53317.
  • Liu Y, Naumenko E, Akhatova F, Zou Q, Fakhrullin R, Yan X. Self-assembled peptide nanoparticles for enhanced dark-field hyperspectral imaging at the cellular and invertebrate level. Chem Eng J. 2021;424:130348. doi:10.1016/j.cej.2021.130348
  • Nigamatzyanova L, Fakhrullin R. Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: a Caenorhabditis elegans study. Environ Pollut. 2021;271:116337. doi:10.1016/j.envpol.2020.116337
  • Pena Mdel P, Gottipati A, Tahiliani S, et al. Hyperspectral imaging of nanoparticles in biological samples: simultaneous visualization and elemental identification. Microsc Res Tech. 2016;79(5):349–358. doi:10.1002/jemt.22637
  • Idelchik MPS, Dillon J, Abariute L, et al. Comparison of hyperspectral classification methods for the analysis of cerium oxide nanoparticles in histological and aqueous samples. J Microsc. 2018;271(1):69–83. doi:10.1111/jmi.12696
  • Touloumes GJ, Ardona HAM, Casalino EK, et al. Mapping 2D- and 3D-distributions of metal/metal oxide nanoparticles within cleared human ex vivo skin tissues. NanoImpact. 2020;17:100208. doi:10.1016/j.impact.2020.100208
  • Zucker RM, Ortenzio J, Degn LL, Lerner JM, Boyes WK. Biophysical comparison of four silver nanoparticles coatings using microscopy, hyperspectral imaging and flow cytometry. PLoS One. 2019;14(7):e0219078. doi:10.1371/journal.pone.0219078
  • Persaud I, Shannahan JH, Raghavendra AJ, Alsaleh NB, Podila R, Brown JM. Biocorona formation contributes to silver nanoparticle induced endoplasmic reticulum stress. Ecotoxicol Environ Saf. 2019;170:77–86. doi:10.1016/j.ecoenv.2018.11.107
  • Hosseinidoust Z, Alam MN, Sim G, Tufenkji N, van de Ven TG. Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale. 2015;7(40):16647–16657. doi:10.1039/C5NR02506K
  • Jenkins SV, Qu H, Mudalige T, et al. Rapid determination of plasmonic nanoparticle agglomeration status in blood. Biomaterials. 2015;51:226–237. doi:10.1016/j.biomaterials.2015.01.072
  • Ishmukhametov I, Nigamatzyanova L, Fakhrullina G, Fakhrullin R. Label-free identification of microplastics in human cells: dark-field microscopy and deep learning study. Anal Bioanal Chem. 2022;414(3):1297–1312. doi:10.1007/s00216-021-03749-y
  • Neil MA, Juskaitis R, Wilson T. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett. 1997;22(24):1905–1907. doi:10.1364/OL.22.001905
  • Rego EH, Shao L, Macklin JJ, et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A. 2012;109(3):E135–E143. doi:10.1073/pnas.1107547108
  • Schermelleh L, Carlton PM, Haase S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science. 2008;320(5881):1332–1336. doi:10.1126/science.1156947
  • Chang BJ, Lin SH, Chou LJ, Chiang SY. Subdiffraction scattered light imaging of gold nanoparticles using structured illumination. Opt Lett. 2011;36(24):4773–4775. doi:10.1364/OL.36.004773
  • Guggenheim EJ, Khan A, Pike J, Chang L, Lynch I, Rappoport JZ. Comparison of confocal and super-resolution reflectance imaging of metal oxide nanoparticles. PLoS One. 2016;11(10):e0159980. doi:10.1371/journal.pone.0159980
  • Guggenheim EJ, Rappoport JZ, Lynch I. Mechanisms for cellular uptake of nanosized clinical MRI contrast agents. Nanotoxicology. 2020;14(4):504–532. doi:10.1080/17435390.2019.1698779
  • Aslam N, Pfender M, Neumann P, et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science. 2017;357(6346):67–71. doi:10.1126/science.aam8697
  • Boss JM, Cujia KS, Zopes J, Degen CL. Quantum sensing with arbitrary frequency resolution. Science. 2017;356(6340):837–840. doi:10.1126/science.aam7009
  • Degen CL, Reinhard F, Cappellaro P. Quantum sensing. Rev Mod Phys. 2017;89(3):035002. doi:10.1103/RevModPhys.89.035002
  • Nagy R, Dasari DBR, Babin C, et al. Narrow inhomogeneous distribution of spin-active emitters in silicon carbide. Appl Phys Lett. 2021;118(14):144003. doi:10.1063/5.0046563
  • Schmitt S, Gefen T, Stürner FM, et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science. 2017;356(6340):832–837. doi:10.1126/science.aam5532
  • Taylor JM, Cappellaro P, Childress L, et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys. 2008;4(10):810–816. doi:10.1038/nphys1075
  • Doherty MW, Struzhkin VV, Simpson DA, et al. Electronic properties and metrology applications of the diamond NV-center under pressure. Phys Rev Lett. 2014;112(4):047601. doi:10.1103/PhysRevLett.112.047601
  • Dolde F, Fedder H, Doherty MW, et al. Electric-field sensing using single diamond spins. Nat Phys. 2011;7(6):459–463. doi:10.1038/nphys1969
  • Kucsko G, Maurer PC, Yao NY, et al. Nanometre-scale thermometry in a living cell. Nature. 2013;500(7460):54–58. doi:10.1038/nature12373
  • Neumann P, Jakobi I, Dolde F, et al. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 2013;13(6):2738–2742. doi:10.1021/nl401216y
  • Wolf T, Neumann P, Nakamura K, et al. Subpicotesla diamond magnetometry. Physical Review X. 2015;5(4):041001. doi:10.1103/PhysRevX.5.041001
  • Barbiero M, Castelletto S, Zhang Q, et al. Nanoscale magnetic imaging enabled by nitrogen vacancy centres in nanodiamonds labelled by iron–oxide nanoparticles. Nanoscale. 2020;12(16):8847–8857. doi:10.1039/C9NR10701K
  • Murray RA, Escobar A, Bastús NG, Andreozzi P, Puntes V, Moya SE. Fluorescently labelled nanomaterials in nanosafety research: practical advice to avoid artefacts and trace unbound dye. NanoImpact. 2018;9:102–113. doi:10.1016/j.impact.2017.11.001
  • Alamo P, Pallares V, Cespedes MV, et al. Fluorescent dye labeling changes the biodistribution of tumor-targeted nanoparticles. Pharmaceutics. 2020;12(11):11. doi:10.3390/pharmaceutics12111004