961
Views
14
CrossRef citations to date
0
Altmetric
REVIEW

Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 3933-3966 | Published online: 07 Sep 2022

References

  • World Health Organization. Cancer Today. World Health Organization; 2021.
  • Arnold M, Sierra MS, Laversanne M, et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–691. doi:10.1136/gutjnl-2015-310912
  • Wong MC, Ding H, Wang J, Chan PS, Huang J. Prevalence and risk factors of colorectal cancer in Asia. Intest Res. 2019;17:317–329. doi:10.5217/ir.2019.00021
  • Sihvola S, Kuosmanen L, Kvist T. Resilience and related factors in colorectal cancer patients: a systematic review. Eur J Oncol Nurs. 2022;56:102079. doi:10.1016/j.ejon.2021.102079
  • Yang C, Merlin D. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy. Nanomaterials. 2020;10:1424. doi:10.3390/nano10071424
  • Tian Q, Liu Y, Zhang Y, et al. THBS2 is a biomarker for AJCC stages and a strong prognostic indicator in colorectal cancer. J Buon. 2018;23:1331–1336.
  • Bennedsgaard K, Ventzel L, Themistocleous AC, et al. Long‐term symptoms of polyneuropathy in breast and colorectal cancer patients treated with and without adjuvant chemotherapy. Cancer Med. 2020;9:5114–5123. doi:10.1002/cam4.3129
  • Duran G, Cruz R, Simoes AR, et al. Efficacy and toxicity of adjuvant chemotherapy on colorectal cancer patients: how much influence from the genetics? J Chemother. 2020;32:310–322. doi:10.1080/1120009X.2020.1764281
  • Yang X, Xie Y. Recent advances in polymeric core–shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int J Pharm. 2021;608:121094. doi:10.1016/j.ijpharm.2021.121094
  • Arumov A, Trabolsi A, Schatz JH. Potency meets precision in nano-optimized chemotherapeutics. Trends Biotechnol. 2021;39:974–977. doi:10.1016/j.tibtech.2021.03.004
  • Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–124. doi:10.1038/s41573-020-0090-8
  • Kundu M, Chatterjee S, Ghosh N, et al. Tumor targeted delivery of umbelliferone via a smart mesoporous silica nanoparticles controlled-release drug delivery system for increased anticancer efficiency. Mater Sci Eng C. 2020;116:111239. doi:10.1016/j.msec.2020.111239
  • Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116:2602–2663. doi:10.1021/acs.chemrev.5b00346
  • Kuen CY, Masarudin MJ. Chitosan nanoparticle-based system: a new insight into the promising controlled release system for lung cancer treatment. Molecules. 2022;27:473. doi:10.3390/molecules27020473
  • Jurczyk M, Jelonek K, Musiał-Kulik M, et al. Single- versus dual-targeted nanoparticles with folic acid and biotin for anticancer drug delivery. Pharmaceutics. 2021;13:326. doi:10.3390/pharmaceutics13030326
  • Mohanty A, Uthaman S, Park IK. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules. 2020;25:4377. doi:10.3390/molecules25194377
  • Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol. 2002;42:620–643. doi:10.1177/00970002042006005
  • Helander HF, Fändriks L. Surface area of the digestive tract-revisited. Scand J Gastroenterol. 2014;49:681–689. doi:10.3109/00365521.2014.898326
  • Shreya AB, Raut SY, Managuli RS, Udupa N, Mutalik S, Marosi G. Active targeting of drugs and bioactive molecules via oral administration by ligand-conjugated lipidic nanocarriers: recent advances. AAPS PharmSciTech. 2018;20:1–12. doi:10.1208/s12249-018-1201-2
  • Homayun B, Lin X, Choi HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019;11:129. doi:10.3390/pharmaceutics11030129
  • El Moukhtari SH, Rodríguez-Nogales C, Blanco-Prieto MJ. Oral lipid nanomedicines: current status and future perspectives in cancer treatment. Adv Drug Deliv Rev. 2021;173:238–251. doi:10.1016/j.addr.2021.03.004
  • Ying K, Bai B, Gao X, et al. Orally administrable therapeutic nanoparticles for the treatment of colorectal cancer. Front Bioeng Biotechnol. 2021;9:480. doi:10.3389/fbioe.2021.670124
  • Prasanth VV, Jayaprakash R, Mathew ST. Colon specific drug delivery systems: a review on various pharmaceutical approaches. J Appl Pharm Sci. 2012;2:163–169.
  • Coupe AJ, Davis SS, Wilding IR. Variation in gastrointestinal transit of pharmaceutical dosage forms in healthy subjects. Pharm Res. 1991;8:360–364. doi:10.1023/A:1015849700421
  • Amidon S, Brown JE, Dave VS. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech. 2015;16:731–741. doi:10.1208/s12249-015-0350-9
  • Dmour I, Taha MO. Natural and semisynthetic polymers in pharmaceutical nanotechnology. In: Organic Materials as Smart Nanocarriers for Drug Delivery. William Andrew Publishing; 2018:35–100. doi:10.1016/B978-0-12-813663-8.00002-6
  • Naskar S, Das SK, Sharma S, Kuotsu K. A review on designing poly (lactic-co-glycolic acid) nanoparticles as drug delivery systems. Pharm Nanotechnol. 2020;9:36–50. doi:10.2174/2211738508666201214103010
  • Choukaife H, Doolaanea AA, Alfatama M. Alginate nanoformulation: influence of process and selected variables. Pharmaceuticals. 2020;13:1–35. doi:10.3390/ph13110335
  • Ravishankar K, Dhamodharan R. Advances in chitosan-based hydrogels: evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents. React Funct Polym. 2020;149:104517. doi:10.1016/j.reactfunctpolym.2020.104517
  • Seyam S, Nordin NA, Alfatama M. Recent progress of chitosan and chitosan derivatives-based nanoparticles: pharmaceutical perspectives of oral insulin delivery. Pharmaceuticals. 2020;13:307. doi:10.3390/ph13100307
  • Harkin C, Mehlmer N, Woortman DV, Brück TB, Brück WM. Nutritional and additive uses of chitin and chitosan in the food industry. In: Sustainable Agriculture Reviews. Vol. 36. Cham: Springer; 2019:1–43. doi:10.1007/978-3-030-16581-9_1
  • Feng P, Luo Y, Ke C, et al. Chitosan-based functional materials for skin wound repair: mechanisms and applications. Front Bioeng Biotechnol. 2021;9:111. doi:10.3389/fbioe.2021.650598
  • Tang G, Tan Z, Zeng W, et al. Recent advances of chitosan-based injectable hydrogels for bone and dental tissue regeneration. Front Bioeng Biotechnol. 2020;8:1084. doi:10.3389/fbioe.2020.587658
  • Chuan D, Jin T, Fan R, Zhou L, Guo G. Chitosan for gene delivery: methods for improvement and applications. Adv Colloid Interface Sci. 2019;268:25–38. doi:10.1016/j.cis.2019.03.007
  • Gulbake A, Jain SK. Chitosan: a potential polymer for colon-specific drug delivery system. Expert Opin Drug Deliv. 2012;9:713–729. doi:10.1517/17425247.2012.682148
  • Patil P, Killedar S. Formulation and characterization of gallic acid and quercetin chitosan nanoparticles for sustained release in treating colorectal cancer. J Drug Deliv Sci Technol. 2021;63:102523. doi:10.1016/j.jddst.2021.102523
  • Kankala RK, Liu CG, Yang DY, Wang S, Chen AZ. Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance. Chem Eng J. 2020;383:123138. doi:10.1016/j.cej.2019.123138
  • Badran MM, Mady MM, Ghannam MM, Shakeel F. Preparation and characterization of polymeric nanoparticles surface modified with chitosan for target treatment of colorectal cancer. Int J Biol Macromol. 2017;95:643–649. doi:10.1016/j.ijbiomac.2016.11.098
  • Ding S, Wang Y, Li J, Chen S. Progress and prospects in chitosan derivatives: modification strategies and medical applications. J Mater Sci Technol. 2021;89:209–224. doi:10.1016/j.jmst.2020.12.008
  • Adhikari HS, Yadav PN. Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int J Biomater. 2018;2018. doi:10.1155/2018/2952085
  • Anitha A, Deepa N, Chennazhi KP, Lakshmanan VK, Jayakumar R. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim Biophys Acta. 2014;1840:2730–2743. doi:10.1016/j.bbagen.2014.06.004
  • Alkhader E, Roberts CJ, Rosli R, et al. Pharmacokinetic and anti-colon cancer properties of curcumin-containing chitosan-pectinate composite nanoparticles. J Biomater Sci Polym. 2018;29:2281–2298. doi:10.1080/09205063.2018.1541500
  • Wang Y, Ma J, Qiu T, et al. In vitro and in vivo combinatorial anticancer effects of oxaliplatin- and resveratrol-loaded N,O-carboxymethyl chitosan nanoparticles against colorectal cancer. Eur J Pharm Sci. 2021;163:105864. doi:10.1016/j.ejps.2021.105864
  • Samprasit W, Opanasopit P, Chamsai B. Mucoadhesive chitosan and thiolated chitosan nanoparticles containing alpha mangostin for possible colon-targeted delivery. Pharm Dev Technol. 2021;26:362–372. doi:10.1080/10837450.2021.1873370
  • Haider M, Zaki KZ, El Hamshary MR, et al. Polymeric nanocarriers: a promising tool for early diagnosis and efficient treatment of colorectal cancer. J Adv Res. 2021;39:237–255. doi:10.1016/j.jare.2021.11.008
  • Shwter AN, Abdullah NA, Alshawsh MA, et al. Chemopreventive effect of Phaleria macrocarpa on colorectal cancer aberrant crypt foci in vivo. J Ethnopharmacol. 2016;193:195–206. doi:10.1016/j.jep.2016.08.002
  • Zhao R, Huang H, Choi BY, et al. Cell growth inhibition by 3-deoxysappanchalcone is mediated by directly targeting the TOPK signaling pathway in colon cancer. Phytomedicine. 2019;61:152813. doi:10.1016/j.phymed.2018.12.036
  • Greene FL, Stewart AK, Norton HJ. A new TNM staging strategy for node-positive (stage III) colon cancer: an analysis of 50,042 patients. Ann Surg. 2002;236:416. doi:10.1097/00000658-200210000-00003
  • Hodges N, Mackenzie H, D’Souza N, Brown G, Miskovic D. Survival outcomes for right-versus left-sided colon cancer and rectal cancer in England: a propensity-score matched population-based cohort study. Eur J Surg Oncol. 2021;48:841–849. doi:10.1016/j.ejso.2021.10.007
  • Norcic G. Liquid biopsy in colorectal cancer-current status and potential clinical applications. Micromachines. 2018;9:300. doi:10.3390/mi9060300
  • Butler TM. Updated Screening Strategies for Colorectal Cancer. Physician Assist Clin. 2021;6:625–635. doi:10.1016/j.cpha.2021.05.007
  • Amin MB, Greene FL, Edge SB, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population‐based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67:93–99. doi:10.3322/caac.21388
  • Qiu Y, Zhang X, Deng X, et al. Circulating tumor cell-associated white blood cell cluster is associated with poor survival of patients with gastric cancer following radical gastrectomy. Eur J Surg Oncol. 2021;48:1039–1045. doi:10.1016/j.ejso.2021.11.115
  • Wislez M, Domblides C, Greillier L, et al. Circulating tumor DNA in advanced non-small-cell lung cancer patients with HIV is associated with shorter overall survival: results from a Phase II trial (IFCT-1001 CHIVA). Lung Cancer. 2021;157:124–130. doi:10.1016/j.lungcan.2021.05.013
  • Hasanain A, Javed AA, van Oosten F, et al. Presence of transitional circulating tumor cells following resection is associated with worse survival in patients with delayed initiation of adjuvant therapy. HPB. 2020;22:S5. doi:10.1016/j.hpb.2020.04.790
  • Chalfin HJ, Glavaris SA, Gorin MA, et al. Circulating tumor cell and circulating tumor DNA assays reveal complementary information for patients with metastatic urothelial cancer. Eur Urol Oncol. 2021;4:310–314. doi:10.1016/j.euo.2019.08.004
  • Ghafouri-Fard S, Hussen BM, Badrlou E, Abak A, Taheri M. MicroRNAs as important contributors in the pathogenesis of colorectal cancer. Biomed Pharmacother. 2021;140:111759. doi:10.1016/j.biopha.2021.111759
  • Neumann MHD, Bender S, Krahn T, Schlange T. ctDNA and CTCs in liquid biopsy – current status and where we need to progress. Comput Struct Biotechnol J. 2018;16:190–195. doi:10.1016/j.csbj.2018.05.002
  • Pal M, Muinao T, Boruah HPD, Mahindroo N. Current advances in prognostic and diagnostic biomarkers for solid cancers: detection techniques and future challenges. Biomed Pharmacother. 2022;146:112488. doi:10.1016/j.biopha.2021.112488
  • Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res. 2012;5:19–27.
  • Chiu H-M, Chang L-C, Hsu W-F, Chou C-K, Wu M-S. Non-invasive screening for colorectal cancer in Asia. Best Pract Res Clin Gastroenterol. 2015;29:953–965. doi:10.1016/j.bpg.2015.09.015
  • Pickhardt PJ, Pooler BD, Kim DH, et al. The natural history of colorectal polyps: overview of predictive static and dynamic features. Gastroenterol Clin. 2018;47:515–536. doi:10.1016/j.gtc.2018.04.004
  • Lu B, Jan Hendriks A, Nolte TM. A generic model based on the properties of nanoparticles and cells for predicting cellular uptake. Colloids Surfaces B Biointerfaces. 2022;209:112155. doi:10.1016/j.colsurfb.2021.112155
  • Nalli M, Puxeddu M, La Regina G, Gianni S, Silvestri R. Emerging therapeutic agents for colorectal cancer. Molecules. 2021;26:7463. doi:10.3390/molecules26247463
  • Hilberg F, Tontsch-Grunt U, Baum A, et al. Triple angiokinase inhibitor nintedanib directly inhibits tumor cell growth and induces tumor shrinkage via blocking oncogenic receptor tyrosine kinases. J Pharmacol Exp Ther. 2018;364:494–503. doi:10.1124/jpet.117.244129
  • Grothey A, Prager G, Yoshino T. The mechanism of action of regorafenib in colorectal cancer: a guide for the community physician. Clin Adv Hematol Oncol. 2019;17:16–19.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–661. doi:10.1021/acs.jnatprod.5b01055
  • Huang X, Yang Z-J, Xie Q, et al. Natural products for treating colorectal cancer: a mechanistic review. Biomed Pharmacother. 2019;117:109142. doi:10.1016/j.biopha.2019.109142
  • Kim EJ, Park SY, Lee J-Y, Park JHY. Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol. 2010;10:1–11. doi:10.1186/1471-230X-10-96
  • Ji Q, Liu X, Fu X, et al. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One. 2013;8:e78700. doi:10.1371/journal.pone.0078700
  • Engelbrecht A-M, Mattheyse M, Ellis B, et al. Proanthocyanidin from grape seeds inactivates the PI3-kinase/PKB pathway and induces apoptosis in a colon cancer cell line. Cancer Lett. 2007;258:144–153. doi:10.1016/j.canlet.2007.08.020
  • Su -C-C, Lin J-G, Li T-M, et al. Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3. Anticancer Res. 2006;26:4379–4389.
  • Su M, Qin B, Liu F, Chen Y, Zhang R. Andrographolide enhanced 5-fluorouracil-induced antitumor effect in colorectal cancer via inhibition of c-MET pathway. Drug Des Devel Ther. 2017;11:3333. doi:10.2147/DDDT.S140354
  • Nauroth JM, Liu YC, Van Elswyk M, et al. Docosahexaenoic acid (DHA) and docosapentaenoic acid (DPAn-6) algal oils reduce inflammatory mediators in human peripheral mononuclear cells in vitro and paw edema in vivo. Lipids. 2010;45:375–384. doi:10.1007/s11745-010-3406-3
  • Hossain Z, Hosokawa M, Takahashi K. Growth inhibition and induction of apoptosis of colon cancer cell lines by applying marine phospholipid. Nutr Cancer. 2008;61:123–130. doi:10.1080/01635580802395725
  • Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front Pharmacol. 2020;11:524. doi:10.3389/fphar.2020.00524
  • Bratten J, Jones MP. New directions in the assessment of gastric function: clinical applications of physiologic measurements. Dig Dis. 2006;24:252–259. doi:10.1159/000092878
  • Ibekwe VC, Fadda HM, McConnell EL, et al. Interplay between intestinal pH, transit time and feed status on the in vivo performance of pH responsive ileo-colonic release systems. Pharm Res. 2008;25:1828–1835. doi:10.1007/s11095-008-9580-9
  • Brunton LL, Knollmann BC, Hilal-Dandan R. Goodman & Gilman’s: The Pharmacological Basis of Therapeutics. McGraw-Hill; 2018.
  • Prabu SL, Suriyaprakash TNK, Ruckmani K. Biopharmaceutics and pharmacokinetics. In: Basic Pharmacokinetic Concepts and Some Clinical Applications. IntechOpen; 2015. doi10.5772/61160
  • Reinus JF, Simon D. Gastrointestinal anatomy and physiology: the essentials. In: Gastrointestinal Anatomy and Physiology: The Essentials. Wiley Blackwell; 2014:1–188. doi:10.1002/9781118833001
  • Huttenhower C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214.
  • Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol. 2011;45:S120–S127. doi:10.1097/MCG.0b013e31822fecfe
  • Sartor RB. Genetics and environmental interactions shape the intestinal microbiome to promote inflammatory bowel disease versus mucosal homeostasis. Gastroenterology. 2010;139:1816–1819. doi:10.1053/j.gastro.2010.10.036
  • Gately NM, Kennedy JE. The development of a melt-extruded shellac carrier for the targeted delivery of probiotics to the colon. Pharmaceutics. 2017;9:38. doi:10.3390/pharmaceutics9040038
  • Shahdadi Sardo H, Saremnejad F, Bagheri S, et al. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int J Pharm. 2019;558:367–379. doi:10.1016/j.ijpharm.2019.01.022
  • Aidy SE, van den Bogert B, Kleerebezem M. The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol. 2015;32:14–20. doi:10.1016/j.copbio.2014.09.005
  • Booijink GM, El-Aidy S, Rajilić-Stojanović M, et al. High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol. 2010;12:3213–3227. doi:10.1111/j.1462-2920.2010.02294.x
  • Kagan L, Hoffman A. Systems for region selective drug delivery in the gastrointestinal tract: biopharmaceutical considerations. Expert Opin Drug Deliv. 2008;5:681–692. doi:10.1517/17425247.5.6.681
  • Hu Z, Mawatari S, Shibata N, et al. Application of a biomagnetic measurement system (BMS) to the evaluation of gastrointestinal transit of intestinal pressure-controlled colon delivery capsules (PCDCs) in human subjects. Pharm Res. 2000;17:160–167. doi:10.1023/A:1007561129221
  • Rao KA, Yazaki E, Evans DF, Carbon R. Objective evaluation of small bowel and colonic transit time using pH telemetry in athletes with gastrointestinal symptoms. Br J Sports Med. 2004;38:482–487. doi:10.1136/bjsm.2003.006825
  • Buhmann S, Kirchhoff C, Ladurner R, et al. Assessment of colonic transit time using MRI: a feasibility study. Eur Radiol. 2006;17:669–674. doi:10.1007/s00330-006-0414-z
  • Johansson MEV, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 2013;10:352–361. doi:10.1038/nrgastro.2013.35
  • Yang L. Biorelevant dissolution testing of colon-specific delivery systems activated by colonic microflora. J Control Release. 2008;125:77–86. doi:10.1016/j.jconrel.2007.10.026
  • Van Citters GW, Lin HC. Ileal brake: neuropeptidergic control of intestinal transit. Curr Gastroenterol Rep. 2006;8:367–373. doi:10.1007/s11894-006-0021-9
  • Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019:1–26. doi:10.1155/2019/3702518
  • Zeeshan A, Farhan M, Siddiqui A. Nanomedicine and drug delivery: a mini review. Int Nano Lett. 2014;4:1–7.
  • Korrapati PS, Karthikeyan K, Satish A, et al. Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. Mater Sci Eng C. 2016;67:747–765. doi:10.1016/j.msec.2016.05.074
  • Pavitra E, Dariya B, Srivani G, et al. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin Cancer Biol. 2021;69:293–306. doi:10.1016/j.semcancer.2019.06.017
  • Indoria S, Singh V, Hsieh MF. Recent advances in theranostic polymeric nanoparticles for cancer treatment: a review. Int J Pharm. 2020;582:119314. doi:10.1016/j.ijpharm.2020.119314
  • Chandran SP, Natarajan SB, Chandraseharan S, Mohd Shahimi MSB. Nano drug delivery strategy of 5-fluorouracil for the treatment of colorectal cancer. J Cancer Res Pract. 2017;4:45–48. doi:10.1016/j.jcrpr.2017.02.002
  • Philip AK, Philip B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J. 2010;25:70–78. doi:10.5001/omj.2010.24
  • Xiao B, Merlin D. Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin Drug Deliv. 2012;9:1393–1407. doi:10.1517/17425247.2012.730517
  • Hua S, Marks E, Schneider JJ, Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomed Nanotechnol Biol Med. 2015;11:1117–1132. doi:10.1016/j.nano.2015.02.018
  • Peterson CG, Eklund E, Taha Y, Raab Y, Carlson M. A new method for the quantification of neutrophil and eosinophil cationic proteins in feces: establishment of normal levels and clinical application in patients with inflammatory bowel disease. Am J Gastroenterol. 2002;97:1755–1762. doi:10.1111/j.1572-0241.2002.05837.x
  • Coco R, Plapied L, Pourcelle V, et al. Drug delivery to inflamed colon by nanoparticles: comparison of different strategies. Int J Pharm. 2013;440:3–12. doi:10.1016/j.ijpharm.2012.07.017
  • Maroni A, Zema L, Loreti G, Palugan L, Gazzaniga A. Film coatings for oral pulsatile release. Int J Pharm. 2013;457:362–371. doi:10.1016/j.ijpharm.2013.03.010
  • Shia J, Klimstra DS, Nitzkorski JR, et al. Immunohistochemical expression of folate receptor α in colorectal carcinoma: patterns and biological significance. Hum Pathol. 2008;39:498–505. doi:10.1016/j.humpath.2007.09.013
  • Xiong S, Yu B, Wu J, Li H, Lee RJ. Preparation, therapeutic efficacy and intratumoral localization of targeted daunorubicin liposomes conjugating folate-PEG-CHEMS. Biomed Pharmacother. 2011;65:2–8. doi:10.1016/j.biopha.2010.10.003
  • Handali S, Moghimipour E, Rezaei M, et al. A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes. Biomed Pharmacother. 2018;108:1259–1273. doi:10.1016/j.biopha.2018.09.128
  • Yu M, Jambhrunkar S, Thorn P, et al. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale. 2012;5:178–183. doi:10.1039/C2NR32145A
  • Tesauro D, Accardo A, Diaferia C, et al. Peptide-based drug-delivery systems in biotechnological applications: recent advances and perspectives. Molecules. 2019;24:351. doi:10.3390/molecules24020351
  • Xiao B, Han MK, Viennois E, et al. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale. 2015;7:17745–17755. doi:10.1039/C5NR04831A
  • Ghosh D, Peng X, Leal J, Mohanty RP. Peptides as drug delivery vehicles across biological barriers. J Pharm Investig. 2017;48:89–111. doi:10.1007/s40005-017-0374-0
  • Jiang Z, Guan J, Qian J, Zhan C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater Sci. 2019;7:461–471. doi:10.1039/C8BM01340C
  • Al-azzawi S, Masheta D. Designing a drug delivery system for improved tumor treatment and targeting by functionalization of a cell-penetrating peptide. J Pharm Investig. 2019;49:643–654. doi:10.1007/s40005-018-00424-w
  • Ren Y, Mu Y, Song Y, et al. A new peptide ligand for colon cancer targeted delivery of micelles. Drug Deliv. 2016;23:1763–1772. doi:10.3109/10717544.2015.1077293
  • Nguyen MNU, Van Vo T, Tran PHL, Tran TTD. Zein-based solid dispersion for potential application in targeted delivery. J Pharm Investig. 2017;47:357–364. doi:10.1007/s40005-017-0314-z
  • Zhu J, Zhong L, Chen W, et al. Preparation and characterization of pectin/chitosan beads containing porous starch embedded with doxorubicin hydrochloride: a novel and simple colon targeted drug delivery system. Food Hydrocoll. 2019;95:562–570. doi:10.1016/j.foodhyd.2018.04.042
  • Barclay TG, Day CM, Petrovsky N, Garg S. Review of polysaccharide particle-based functional drug delivery. Carbohydr Polym. 2019;221:94–112. doi:10.1016/j.carbpol.2019.05.067
  • Lopes PP, Tanabe EH, Bertuol DA. Chitosan as biomaterial in drug delivery and tissue engineering. In: Handbook of Chitin and Chitosan. Vol. 3. Elsevier; 2020:407–431.
  • Nurhayati Y, Manaf Ali A. Production of Chitosan Oligosaccharides using β-glycosidic degrading enzyme: optimization using response surface methodology. Malaysian J Appl Sci. 2020;5:30–44. doi:10.37231/myjas.2020.5.2.261
  • Aizat MA, Aziz F. Chitosan nanocomposite application in wastewater treatments. In: Nanotechnology in Water and Wastewater Treatment. Elsevier; 2019:243–265. doi:10.1016/B978-0-12-813902-8.00012-5
  • Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol. 2016;85:467–475. doi:10.1016/j.ijbiomac.2016.01.022
  • Nilsen-Nygaard J, Strand SP, Vårum KM, Draget KI, Nordgård CT. Chitosan: gels and interfacial properties. Polymers. 2015;7:552–579.
  • Moine L, Canali MM, Porporatto C, Correa SG. Reviewing the biological activity of chitosan in the mucosa: focus on intestinal immunity. Int J Biol Macromol. 2021;189:324–334. doi:10.1016/j.ijbiomac.2021.08.098
  • Grgac SF, Tarbuk A, Dekanic T, Sujka W, Draczynski Z. The chitosan implementation into cotton and polyester/cotton blend fabrics. Materials. 2020;13:1616. doi:10.3390/ma13071616
  • Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics. 2021;13:1686. doi:10.3390/pharmaceutics13101686
  • Petrou G, Crouzier T. Mucins as multifunctional building blocks of biomaterials. Biomater Sci. 2018;6:2282–2297. doi:10.1039/C8BM00471D
  • Lee S, Müller M, Rezwan K, Spencer ND. Porcine Gastric Mucin (PGM) at the Water/Poly(Dimethylsiloxane) (PDMS) interface: influence of pH and ionic strength on its conformation, adsorption, and aqueous lubrication properties. Langmuir. 2005;21:8344–8353. doi:10.1021/la050779w
  • Collado-González M, Espinosa YG, Goycoolea FM. Interaction between chitosan and mucin: fundamentals and applications. Biomimetics. 2019;4:32. doi:10.3390/biomimetics4020032
  • Jayakumar R, Prabaharan M. Chitosan for Biomaterials III: Structure-Property Relationships. Cham: Springer; 2021. doi:10.1007/978-3-030-83807-2
  • Gavini E, Rassu G, Sanna V, et al. Mucoadhesive microspheres for nasal administration of an antiemetic drug, metoclopramide: in-vitro/ex-vivo studies. J Pharm Pharmacol. 2010;57:287–294. doi:10.1211/0022357055623
  • Garg U, Chauhan S, Nagaich U, Jain N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull. 2019;9:195. doi:10.15171/apb.2019.023
  • Lin C, Kuo TC, Lin JC, Ho YC, Mi FL. Delivery of polysaccharides from Ophiopogon japonicus (OJPs) using OJPs/chitosan/whey protein co-assembled nanoparticles to treat defective intestinal epithelial tight junction barrier. Int J Biol Macromol. 2020;160:558–570. doi:10.1016/j.ijbiomac.2020.05.151
  • Dou T, Wang J, Han C, et al. Cellular uptake and transport characteristics of chitosan modified nanoparticles in Caco-2 cell monolayers. Int J Biol Macromol. 2019;138:791–799. doi:10.1016/j.ijbiomac.2019.07.168
  • Da Silva FLO, Marques MB, Kato KC, Carneiro G. Nanonization techniques to overcome poor water-solubility with drugs. Expert Opin Drug Discov. 2020;15:853–864. doi:10.1080/17460441.2020.1750591
  • Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:193. doi:10.3389/fmolb.2020.00193
  • De Jong WH, Paul JB. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3:133–149. doi:10.2147/IJN.S596
  • Afzal M, Alharbi KS. Nanomedicine in treatment of breast cancer – a challenge to conventional therapy. Semin Cancer Biol. 2021;69:279–292. doi:10.1016/j.semcancer.2019.12.016
  • White BD, Duan C, Townley HE. Nanoparticle activation methods in cancer treatment. Biomolecules. 2019;9:202. doi:10.3390/biom9050202
  • Sutradhar KB, Amin ML. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol. 2014;2014:1–12. doi:10.1155/2014/939378
  • Sen K, Banerjee S, Mandal M. Dual drug loaded liposome bearing apigenin and 5-fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf B Biointerfaces. 2019;180:9–22. doi:10.1016/j.colsurfb.2019.04.035
  • Vigneshwaran R, Ezhilarasan D, Rajeshkumar S. Inorganic titanium dioxide nanoparticles induces cytotoxicity in colon cancer cells. Inorg Chem Commun. 2021;133:108920. doi:10.1016/j.inoche.2021.108920
  • Abouaitah K, Hassan HA, Swiderska-Sroda A, et al. Targeted nano-drug delivery of colchicine against colon cancer cells by means of mesoporous silica nanoparticles. Cancers. 2020;12:12. doi:10.3390/cancers12010144
  • Zielinska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25:3731. doi:10.3390/molecules25163731
  • Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials. 2020;10:1–41. doi:10.3390/nano10071403
  • Herdiana Y, Wathoni N, Shamsuddin S, Joni IM, Muchtaridi M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers. 2021;13:1717. doi:10.3390/polym13111717
  • Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10:7921–7924. doi:10.7150/thno.49577
  • Morshed M, Chowdhury EH. Gene delivery and clinical applications. In: Encyclopedia of Biomedical Engineering. Vol. 1–3. Elsevier; 2019:345–351.
  • Shah MR, Imran M, Ullah S. Nanocarrier-based targeted pulmonary delivery: novel approaches for effective lung cancer treatment. Nanocarriers Cancer Diagnosis Target Chemother. 2019;129–161. doi:10.1016/B978-0-12-816773-1.00006-7
  • Bose A, Wong TW. Oral colon cancer targeting by chitosan nanocomposites. Appl Nanocomposite Mater Drug Deliv. 2018;409–429. doi:10.1016/B978-0-12-813741-3.00018-2
  • Salahpour anarjan F. Active targeting drug delivery nanocarriers: ligands. Nano Struct Nano Objects. 2019;19:100370. doi:10.1016/j.nanoso.2019.100370
  • Sen P, Saha M, Ghosh SS. Nanoparticle mediated alteration of EMT dynamics: an approach to modulate cancer therapeutics. Mater Adv. 2020;1:2614–2630. doi:10.1039/D0MA00455C
  • Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol. 2019;12:137. doi:10.1186/s13045-019-0833-3
  • Hwang J, Sullivan MO, Kiick KL. Targeted drug delivery via the use of ECM-mimetic materials. Front Bioeng Biotechnol. 2020;8:69. doi:10.3389/fbioe.2020.00069
  • Senthil Kumar C, Thangam R, Mary SA, et al. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr Polym. 2020;231:115682. doi:10.1016/j.carbpol.2019.115682
  • Safdar R, Omar AA, Arunagiri A, Regupathi I, Thanabalan M. Potential of Chitosan and its derivatives for controlled drug release applications – a review. J Drug Deliv Sci Technol. 2019;49:642–659. doi:10.1016/j.jddst.2018.10.020
  • Qin C, Li H, Xiao Q, et al. Water-solubility of chitosan and its antimicrobial activity. Carbohydr Polym. 2006;63:367–374. doi:10.1016/j.carbpol.2005.09.023
  • Muzzarelli RAA, Tanfani F. The N-permethylation of chitosan and the preparation of N-trimethyl chitosan iodide. Carbohydr Polym. 1985;5:297–307. doi:10.1016/0144-8617(85)90037-2
  • Jintapattanakit A, Mao S, Kissel T, Junyaprasert VB. Physicochemical properties and biocompatibility of N-trimethyl chitosan: effect of quaternization and dimethylation. Eur J Pharm Biopharm. 2008;70:563–571. doi:10.1016/j.ejpb.2008.06.002
  • Mourya VK, Inamdar NN. Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med. 2008;20:1057–1079. doi:10.1007/s10856-008-3659-z
  • Chen G, Svirskis D, Lu W, et al. N-trimethyl chitosan coated nano-complexes enhance the oral bioavailability and chemotherapeutic effects of gemcitabine. Carbohydr Polym. 2021;273:118592. doi:10.1016/j.carbpol.2021.118592
  • Kotzé AF, Lueßen HL, De leeuw BJ, et al. Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Release. 1998;51:35–46. doi:10.1016/S0168-3659(97)00154-5
  • Kotze AF, Thanou MM, Lueßen HL, et al. Effect of the degree of quaternization of N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). Eur J Pharm Biopharm. 1999;47:269–274. doi:10.1016/S0939-6411(99)00006-5
  • Shariatinia Z. Carboxymethyl chitosan: properties and biomedical applications. Int J Biol Macromol. 2018;120:1406–1419. doi:10.1016/j.ijbiomac.2018.09.131
  • Rahmani S, Mohammadi Z, Amini M, et al. Methylated 4-N,N dimethyl aminobenzyl N,O carboxymethyl chitosan as a new chitosan derivative: synthesis, characterization, cytotoxicity and antibacterial activity. Carbohydr Polym. 2016;149:131–139. doi:10.1016/j.carbpol.2016.04.116
  • Muñoz Ruiz GA, Fabio H, Corrales Z. Chitosan, chitosan derivatives and their biomedical applications. In: Biological Activities and Application of Marine Polysaccharides. IntechOpen; 2017. doi10.5772/66527
  • Moghaddam AS, Khonakdar HA, Sarikhani E, et al. Fabrication of carboxymethyl chitosan nanoparticles to deliver paclitaxel for melanoma treatment. ChemNanoMat. 2020;6:1373–1385. doi:10.1002/cnma.202000229
  • Pan X, Chen J, Yang M, et al. Enzyme/pH dual-responsive polymer prodrug nanoparticles based on 10-hydroxycamptothecin-carboxymethyl chitosan for enhanced drug stability and anticancer efficacy. Eur Polym J. 2019;117:372–381. doi:10.1016/j.eurpolymj.2019.04.050
  • Yan C, Chen D, Gu J, et al. Preparation of N-Succinyl-chitosan and their physical-chemical properties as a novel excipient. Yakugaku Zasshi. 2006;126:789–793. doi:10.1248/yakushi.126.789
  • Raizaday A, Yadav HK, Jayanth A, Kaushi SR, Mathew M, Zachariah AB. Formulation and evaluation of pH sensitive microspheres of N-succinyl chitosan for the treatment of diverticulitis. Cell Chem Technol. 2015;49:41–50.
  • Bashir S, Teo YY, Ramesh S, Ramesh K, Khan AA. N-succinyl chitosan preparation, characterization, properties and biomedical applications: a state of the art review. Rev Chem Eng. 2015;31:563–597.
  • Kato Y, Onishi H, Machida Y. N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates. Biomaterials. 2004;25:907–915. doi:10.1016/S0142-9612(03)00598-2
  • Wang Y, Karmakar T, Ghosh N, Basak S, Gopal Sahoo N. Targeting mangiferin loaded N-succinyl chitosan-alginate grafted nanoparticles against atherosclerosis – a case study against diabetes mediated hyperlipidemia in rat. Food Chem. 2022;370:131376. doi:10.1016/j.foodchem.2021.131376
  • Ghaffari SB, Sarrafzadeh MH, Salami M, Khorramizadeh MR. A pH-sensitive delivery system based on N-succinyl chitosan-ZnO nanoparticles for improving antibacterial and anticancer activities of curcumin. Int J Biol Macromol. 2020;151:428–440. doi:10.1016/j.ijbiomac.2020.02.141
  • Bashir S, Teo YY, Naeem S, Ramesh S, Ramesh K. pH responsive N-succinyl chitosan/poly (acrylamide-co-acrylic acid) hydrogels and in vitro release of 5-fluorouracil. PLoS One. 2017;12:e0179250. doi:10.1371/journal.pone.0179250
  • Cristallini C, Barbani N, Bianchi S. Injectable hydrogel based on dialdehyde galactomannan and N-succinyl chitosan: a suitable platform for cell culture. J Mater Sci Mater Med. 2019;31:1–13. doi:10.1007/s10856-019-6328-5
  • Zhu Y, Kruglikov IL, Akgul Y, Scherer PE. Hyaluronan in adipogenesis, adipose tissue physiology and systemic metabolism. Matrix Biol. 2019;78–79:284–291. doi:10.1016/j.matbio.2018.02.012
  • Luo Z, Dai Y, Gao H. Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm Sin B. 2019;9:1099–1112. doi:10.1016/j.apsb.2019.06.004
  • Jain A, Jain SK. Optimization of chitosan nanoparticles for colon tumors using experimental design methodology. Artif Cells Nanomedicine Biotechnol. 2015;44:1917–1926. doi:10.3109/21691401.2015.1111236
  • Liang Y, Wang Y, Wang L, et al. Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder cancer. Bioact Mater. 2021;6:433–446. doi:10.1016/j.bioactmat.2020.08.019
  • Chiesa E, Dorati R, Conti B, et al. Hyaluronic acid-decorated chitosan nanoparticles for CD44-targeted delivery of everolimus. Int J Mol Sci. 2018;19:2310. doi:10.3390/ijms19082310
  • Serrano-Sevilla I, Artiga Á, Mitchell SG, De Matteis L, de la Fuente JM. Natural polysaccharides for siRNA delivery: nanocarriers based on chitosan, hyaluronic acid, and their derivatives. Molecules. 2019;24:2570. doi:10.3390/molecules24142570
  • Sionkowska A, Gadomska M, Musiał K, Piatek J. Hyaluronic acid as a component of natural polymer blends for biomedical applications: a review. Molecules. 2020;25:4035.
  • Mohapatra A, Uthaman S, Park I-K. Polyethylene glycol nanoparticles as promising tools for anticancer therapeutics. Tool Anti Cancer Ther. 2019;205–231. doi:10.1016/B978-0-12-816963-6.00010-8
  • Gorochovceva N, Makuška R. Synthesis and study of water-soluble chitosan-O-poly(ethylene glycol) graft copolymers. Eur Polym J. 2004;40:685–691. doi:10.1016/j.eurpolymj.2003.12.005
  • Casettari L, Vllasaliu D, Castagnino E, et al. PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci. 2012;37:659–685. doi:10.1016/j.progpolymsci.2011.10.001
  • Bozuyuk U, Gokulu IS, Dogan NO, Kizilel S. A novel method for PEGylation of chitosan nanoparticles through photopolymerization. RSC Adv. 2019;9:14011–14015. doi:10.1039/C9RA00780F
  • Andrade F, Goycoolea F, Chiappetta DA, et al. Chitosan-grafted copolymers and chitosan-ligand conjugates as matrices for pulmonary drug delivery. Int J Carbohydr Chem. 2011;2011:1–14. doi:10.1155/2011/865704
  • Shad PM, Karizi SZ, Javan RS, et al. Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line). Toxicol Vitr. 2020;65:104756. doi:10.1016/j.tiv.2019.104756
  • Soleymani J, Hasanzadeh M, Shadjou N, Somi MH, Jouyban A. The role of nanomaterials on the cancer cells sensing based on folate receptor: analytical approach. Trends Anal Chem. 2020;125:115834. doi:10.1016/j.trac.2020.115834
  • Ghaz-Jahanian MA, Abbaspour-Aghdam F, Anarjan N, Berenjian A, Jafarizadeh-Malmiri H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol Biotechnol. 2015;57:201–218. doi:10.1007/s12033-014-9816-3
  • Cheng L, Ma H, Shao M. Synthesis of folate‑chitosan nanoparticles loaded with ligustrazine to target folate receptor positive cancer cells. Mol Med Rep. 2017;16:1101–1108. doi:10.3892/mmr.2017.6740
  • Xu W, Jiang X, Huang L. RNA interference technology. In: Comprehensive Biotechnology. Third ed. Elsevier; 2019:560–575. doi:10.1016/B978-0-444-64046-8.00282-2
  • Mahmoodi Chalbatani G, Dana H, Gharagouzloo E, et al. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomedicine. 2019;14:3111. doi:10.2147/IJN.S200253
  • Sadreddini S, Safaralizadeh R, Baradaran B, et al. Chitosan nanoparticles as a dual drug/siRNA delivery system for treatment of colorectal cancer. Immunol Lett. 2017;181:79–86. doi:10.1016/j.imlet.2016.11.013
  • Gomathysankar S, Halim AS, Yaacob NS. Proliferation of keratinocytes induced by adipose-derived stem cells on a chitosan scaffold and its role in wound healing, a review. Arch Plast Surg. 2014;41:452–457. doi:10.5999/aps.2014.41.5.452
  • Sabra R, Billa N, Roberts CJ. An augmented delivery of the anticancer agent, curcumin, to the colon. React Funct Polym. 2018;123:54–60. doi:10.1016/j.reactfunctpolym.2017.12.012
  • Sabra R, Billa N, Roberts CJ. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer. Int J Pharm. 2019;572:118775. doi:10.1016/j.ijpharm.2019.118775
  • Bhattacharya S. Fabrication and characterization of chitosan-based polymeric nanoparticles of Imatinib for colorectal cancer targeting application. Int J Biol Macromol. 2020;151:104–115. doi:10.1016/j.ijbiomac.2020.02.151
  • Liu W, Zhu Y, Wang F, et al. Galactosylated chitosan-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. R Soc Open Sci. 2018;5:181027. doi:10.1098/rsos.181027
  • Chen G, Zhao Y, Xu Y, et al. Chitosan nanoparticles for oral photothermally enhanced photodynamic therapy of colon cancer. Int J Pharm. 2020;589:119763. doi:10.1016/j.ijpharm.2020.119763
  • Gouda M, Ibrahim HIM, Negm A. Chitosan containing nano Zn-organic framework: synthesis, characterization and biological activity. Polym. 2022;14:1276. doi:10.3390/polym14071276
  • Kamel KM, Khalil IA, Rateb ME, Elgendy H, Elhawary S. Chitosan-coated cinnamon/oregano-loaded solid lipid nanoparticles to augment 5-fluorouracil cytotoxicity for colorectal cancer: extract standardization, nanoparticle optimization, and cytotoxicity evaluation. J Agric Food Chem. 2017;65:7966–7981. doi:10.1021/acs.jafc.7b03093
  • Udompornmongkol P, Chiang BH. Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. J Biomater Appl. 2015;30:537–546. doi:10.1177/0885328215594479
  • Yusefi M, Chan H-Y, Teow S-Y, et al. 5-fluorouracil encapsulated chitosan-cellulose fiber bionanocomposites: synthesis, characterization and in vitro analysis towards colorectal cancer cells. Nanomaterials. 2021;11:1691. doi:10.3390/nano11071691
  • Han W, Xie B, Li Y, et al. Orally deliverable nanotherapeutics for the synergistic treatment of colitis-associated colorectal cancer. Theranostics. 2019;9:7458. doi:10.7150/thno.38081
  • Yang SJ, Lin F-H, Tsai K-C, et al. Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin ix accumulation in colorectal cancer cells. Bioconjug Chem. 2010;21:679–689. doi:10.1021/bc9004798
  • Jain A, Jain SK, Ganesh N, Barve J, Beg AM. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomed Nanotechnol Biol Med. 2010;6:179–190. doi:10.1016/j.nano.2009.03.002
  • Soe ZC, Poudel BK, Nguyen HT, et al. Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells. Asian J Pharm Sci. 2019;14:40–51. doi:10.1016/j.ajps.2018.09.004
  • Guo XY, Wang P, Du QG, et al. Paclitaxel and gemcitabine combinational drug-loaded mucoadhesive delivery system in the treatment of colon cancers. Drug Res. 2015;65:199–204.
  • Sun L, Li Z, Li Z, et al. Improving antitumor activity with N -trimethyl chitosan entrapping camptothecin in colon cancer and lung cancer. J Nanosci Nanotechnol. 2015;15:6397–6404. doi:10.1166/jnn.2015.10736
  • Abu Elella MH, Mohamed RR, Abdel-Aziz MM, Sabaa MW. Green synthesis of antimicrobial and antitumor N,N,N-trimethyl chitosan chloride/poly (acrylic acid)/silver nanocomposites. Int J Biol Macromol. 2018;111:706–716. doi:10.1016/j.ijbiomac.2018.01.055
  • Rahmati A, Homayouni Tabrizi M, Karimi E, Zarei B. Fabrication and assessment of folic acid conjugated-chitosan modified PLGA nanoparticle for delivery of alpha terpineol in colon cancer. Journal of Biomaterials Science, Polymer Edition. 2022;33:1289–1307. doi:10.1080/09205063.2022.2051693
  • Lazer LM, Kesavan Y, Gor R, et al. Targeting colon cancer stem cells using novel doublecortin like kinase 1 antibody functionalized folic acid conjugated hesperetin encapsulated chitosan nanoparticles. Colloids Surfaces B Biointerfaces. 2022;217:112612. doi:10.1016/j.colsurfb.2022.112612
  • Mary lazer L, Sadhasivam B, Palaniyandi K, et al. Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin. Int J Biol Macromol. 2018;107:1988–1998. doi:10.1016/j.ijbiomac.2017.10.064
  • Ullah S, Azad AK, Nawaz A, et al. 5-fluorouracil-loaded folic-acid-fabricated chitosan nanoparticles for site-targeted drug delivery cargo. Polymers. 2022;14:2010. doi:10.3390/polym14102010
  • Anirudhan TS, Sekhar VC, Nair SS. Polyelectrolyte complexes of carboxymethyl chitosan/alginate based drug carrier for targeted and controlled release of dual drug. J Drug Deliv Sci Technol. 2019;51:569–582. doi:10.1016/j.jddst.2019.03.036
  • Bhaskaran NA, Jitta SR, Cheruku S, et al. Orally delivered solid lipid nanoparticles of irinotecan coupled with chitosan surface modification to treat colon cancer: preparation, in-vitro and in-vivo evaluations. Int J Biol Macromol. 2022;211:301–315. doi:10.1016/j.ijbiomac.2022.05.060
  • Samprasit W, Opanasopit P, Chamsai B. Alpha-mangostin and resveratrol, dual-drugs-loaded mucoadhesive thiolated chitosan-based nanoparticles for synergistic activity against colon cancer cells. J Biomed Mater Res Part B Appl Biomater. 2022;110:1221–1233. doi:10.1002/jbm.b.34992
  • Siahmansouri H, Somi MH, Babaloo Z, et al. Effects of HMGA2 siRNA and doxorubicin dual delivery by chitosan nanoparticles on cytotoxicity and gene expression of HT-29 colorectal cancer cell line. J Pharm Pharmacol. 2016;68:1119–1130. doi:10.1111/jphp.12593
  • Yan L, Gao S, Shui S, et al. Small interfering RNA-loaded chitosan hydrochloride/carboxymethyl chitosan nanoparticles for ultrasound-triggered release to hamper colorectal cancer growth in vitro. Int J Biol Macromol. 2020;162:1303–1310. doi:10.1016/j.ijbiomac.2020.06.246
  • Nikkhoo A, Rostami N, Farhadi S, et al. Codelivery of STAT3 siRNA and BV6 by carboxymethyl dextran trimethyl chitosan nanoparticles suppresses cancer cell progression. Int J Pharm. 2020;581:119236. doi:10.1016/j.ijpharm.2020.119236