142
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Efficient Sequential Co-Delivery Nanosystem for Inhibition of Tumor and Tumor-Associated Fibroblast-Induced Resistance and Metastasis

, , , , , & show all
Pages 1749-1766 | Received 21 Jul 2023, Accepted 20 Dec 2023, Published online: 22 Feb 2024

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
  • Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017;2017:50.
  • Anastasiadi Z, Lianos GD, Ignatiadou E, Harissis HV, Mitsis M. Breast cancer in young women: an overview. Updates Surg. 2017;69(3):313–317. doi:10.1007/s13304-017-0424-1
  • Miller-Kleinhenz JM, Bozeman EN, Yang L. Targeted nanoparticles for image-guided treatment of triple-negative breast cancer: clinical significance and technological advances. Wiley Interd Rev Nanomed Nanobiotechnology. 2015;7(6):797–816.
  • Du ML, Ouyang Y, Meng FS, et al. Nanotargeted agents: an emerging therapeutic strategy for breast cancer. Nanomedicine. 2019;14(13):1771–1786. doi:10.2217/nnm-2018-0481
  • Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8(2):98–101.
  • Yang S, Gao HL. Nanoparticles for modulating Cancer microenvironment to improve drug delivery and Cancer therapy. Pharmacol Res. 2017;126:97–108. doi:10.1016/j.phrs.2017.05.004
  • Wagner EF. CANCER Fibroblasts for all seasons. Nature. 2016;530:7588):42–43. doi:10.1038/530042a
  • Goulet CR, Pouliot F. TGF beta Signaling in the Cancer Microenvironment. In: Birbrair A, editor. Cancer Microenvironment: Signaling Pathways, Pt B. Springer; 2021:89–105.
  • Zhu Y, Yu FY, Tan Y, Yuan H, Hu FQ. Strategies of targeting pathological stroma for enhanced antiCancer therapies. Pharmacol Res. 2019;2019:148.
  • Liu J, Li M, Luo Z, Dai L, Guo X, Cai K. Design of nanocarriers based on complex biological barriers in vivo for Cancer therapy. Nano Today. 2017;15:56–90. doi:10.1016/j.nantod.2017.06.010
  • Chen XM, Song EW. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99–115. doi:10.1038/s41573-018-0004-1
  • Buchsbaum RJ, Oh SY. Breast cancer-associated fibroblasts: where we are and where we need to go. Cancers. 2016;8(2):19. doi:10.3390/cancers8020019
  • Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic Cancers: emerging role of integrins. Semi Cancer Biol. 2020;62:166–181. doi:10.1016/j.semcancer.2019.08.004
  • Salimifard S, Masjedi A, Hojjat-Farsangi M, et al. Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer. Pathol Res Pract. 2020;216(5):152915. doi:10.1016/j.prp.2020.152915
  • Guo L, Zhang Y, Al-Jamal KT. Recent progress in nanotechnology-based drug carriers for celastrol delivery. Biomater Sci. 2021;9(19):6355–6380. doi:10.1039/D1BM00639H
  • Xiao YT, Li X, Mao JH, et al. Reverse anti-breast cancer drug resistance effects by a novel two-step assembled nano-celastrol medicine. Nanoscale. 2022;14(21):7856–7863. doi:10.1039/D2NR02064E
  • Liu Q, Chen FQ, Hou L, et al. Nanocarrier-mediated chemo-immunotherapy arrested cancer progression and induced cancer dormancy in desmoplastic melanoma. Acs Nano. 2018;12(8):7812–7825. doi:10.1021/acsnano.8b01890
  • Amiri S, Dastghaib S, Ahmadi M, et al. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv. 2020;38:107409. doi:10.1016/j.biotechadv.2019.06.008
  • Yang QR, Xu J, Gu JM, et al. Extracellular vesicles in cancer drug resistance: roles, mechanisms, and implications. Adv Sci. 2022;9(34):2201609. doi:10.1002/advs.202201609
  • Qi X, Gao C, Yin C, Fan J, Wu X, Guo C. Improved anticancer activity of betulinic acid on breast cancer through a grafted copolymer-based micelles system. Drug Deliv. 2021;28(1):1962–1971. doi:10.1080/10717544.2021.1979125
  • Li Z, Guo Z, Chu D, et al. Effectively suppressed angiogenesis-mediated retinoblastoma growth using celastrol nanomicelles. Drug Deliv. 2020;27(1):358–366. doi:10.1080/10717544.2020.1730522
  • Santos AC, Pereira I, Pereira-Silva M, et al. Nanocarriers for resveratrol delivery: impact on stability and solubility concerns. Tren Food Sci Technol. 2019;91:483–497.
  • Solanki R, Jodha B, Prabina KE, Aggarwal N, Patel S. Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: a review. J Drug Del Sci Technol. 2022;2022:77.
  • Truffi M, Mazzucchelli S, Bonizzi A, et al. Nano-strategies to target breast cancer-associated fibroblasts: rearranging the cancer microenvironment to achieve anticancer efficacy. Int J Mol Sci. 2019;20(6):1263. doi:10.3390/ijms20061263
  • Singh AK, Pandey A, Tewari M, et al. Prospects of Nano-Material in Breast Cancer Management. Pathol Oncol Res. 2013;19(2):155–165. doi:10.1007/s12253-013-9609-1
  • Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv Drug Delivery Rev. 2020;156:80–118. doi:10.1016/j.addr.2020.09.009
  • Lee J, Kim J, Jeong M, et al. Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for cancer penetration. Nano Lett. 2015;15(5):2938–2944. doi:10.1021/nl5047494
  • Li YM, Chen Z, Cui YA, Zhai GX, Li LB. The construction and characterization of hybrid paclitaxel-in-micelle-in-liposome systems for enhanced oral drug delivery. Colloids Surf B Biointerfaces. 2017;160:572–580. doi:10.1016/j.colsurfb.2017.10.016
  • Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human Cancer xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55(17):3752–3756.
  • Wang L, Li M, Zhang N. Folate-targeted docetaxel-lipid-based-nanosuspensions for active-targeted cancer therapy. Int J Nanomed. 2012;7:3281–3294. doi:10.2147/IJN.S32520
  • Stanisavljevic M, Krizkova S, Vaculovicova M, Kizek R, Adam V. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens Bioelectron. 2015;74:562–574. doi:10.1016/j.bios.2015.06.076
  • Zhao XZ, Yang X, Wang XD, et al. Penetration cascade of size switchable nanosystem in desmoplastic stroma for improved pancreatic cancer therapy. Acs Nano. 2021;15(9):14149–14161. doi:10.1021/acsnano.0c08860
  • Shi YF, Du LM, Lin LY, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov. 2017;16(1):35–52. doi:10.1038/nrd.2016.193
  • Song J, Ge ZH, Yang XR, et al. Hepatic stellate cells activated by acidic Cancer microenvironment promote the metastasis of hepatocellular carcinoma via osteopontin. Cancer Lett. 2015;356(2):713–720. doi:10.1016/j.canlet.2014.10.021
  • Hsu TI, Chen YJ, Hung CY, et al. A novel derivative of betulinic acid, SYK023, suppresses lung cancer growth and malignancy. Oncotarget. 2015;6(15):13671–13687. doi:10.18632/oncotarget.3701
  • Mullauer FB, van Bloois L, Daalhuisen JB, et al. Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anti-Cancer Drugs. 2011;22(3):223–233. doi:10.1097/CAD.0b013e3283421035
  • Tariq I, Ali MY, Janga H, et al. Downregulation of MDR 1 gene contributes to tyrosine kinase inhibitor induce apoptosis and reduction in Cancer metastasis: a gravity to space investigation. Int J Pharm. 2020;2020:591.
  • Liu MT, Luo Z, Li ZG, et al. Engineered celastrol and plasmid co-delivery for in situ expression and targeted mitochondrial relocation of Nur77 protein towards effective drug resistance reversion. Chem Eng J. 2023;2023:453.
  • Saw PE, Chen JN, Song EW. Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer. 2022;8(7):527–555. doi:10.1016/j.trecan.2022.03.001