230
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Glucose-Regulated Protein 78 Targeting ICG and DOX Loaded Hollow Fe3O4 Nanoparticles for Hepatocellular Carcinoma Diagnosis and Therapy

ORCID Icon, , ORCID Icon, , ORCID Icon &
Pages 189-208 | Received 25 Jul 2023, Accepted 16 Dec 2023, Published online: 08 Jan 2024

References

  • Balogh J, Victor D, Asham EH., et al. Hepatocellular carcinoma: a review. J Hepatocellular Carcinoma. 2016;3:41. doi:10.2147/JHC.S61146
  • Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. doi:10.1038/s41572-020-00240-3
  • Yang WS, Zeng XF, Liu ZN, et al. Diet and liver cancer risk: a narrative review of epidemiological evidence. Br J Nutr. 2020;124(3):330. doi:10.1017/S0007114520001208
  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209. doi:10.3322/caac.21660
  • Wang WY, Wei C. Advances in the early diagnosis of hepatocellular carcinoma. Genes Dis. 2020;7(3):308. doi:10.1016/j.gendis.2020.01.014
  • Yun UJ, Bae SJ, Song YR, Kim YW. A critical yap in malignancy of HCC is regulated by evodiamine. Int J of Mol Sci. 2022;23(3). doi:10.3390/ijms23031855
  • Cai C, Tian F, Ma JP, Yu ZP, Yang M, Yi CQ. BSA-templated synthesis of Ir/Gd bimetallic oxide nanotheranostics for MR/CT imaging-guided photothermal and photodynamic synergistic therapy. Nanoscale. 2023;15(9):4457. doi:10.1039/d2nr06306a
  • Li B, Wang W, Zhao L, et al. Multifunctional AIE nanosphere-based “nanobomb” for trimodal imaging-guided photothermal/photodynamic/ pharmacological therapy of drug-resistant bacterial infections. ACS Nano. 2023;17(5):4601. doi:10.1021/acsnano.2c10694
  • Ma XX, Huang YR, Chen WJ, et al. J-aggregates formed by NaCl treatment of Aza-coating heptamethine cyanines and their application to monitoring salt stress of plants and promoting photothermal therapy of tumors. Angew Chem Int Ed Engl. 2022;62(3):e202216109. doi:10.1002/anie.202216109
  • Tong W, Hui H, Zhang YQ, Tian J, Chen YD. Abstract 10227: high-Sensitive Magnetic Particle Imaging of Intraplaque Hemorrhage for Identification of Unstable Atherosclerotic Plaques. Circulation. 2021;144(Suppl_1):A10227. doi:10.1161/circ.144.suppl_1.10227
  • Tong W, Hui H, Shang WT, et al. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Theranostics. 2021;11(2):506. doi:10.7150/thno.49812
  • Yu EY, Bishop MI, Zheng B, et al. Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett. 2017;17(3):1648. doi:10.1021/acs.nanolett.6b04865
  • Wang GR, Li WZ, Shi GY, et al. Sensitive and specific detection of breast cancer lymph node metastasis through dual-modality magnetic particle imaging and fluorescence molecular imaging: a preclinical evaluation. European Journal of Nuclear Medicine and Molecular Imaging. 2022;49(8):2723. doi:10.1007/s00259-022-05834-5
  • Du Y, Liu XL, Liang Q, Liang X-J, Tian J. Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy. Nano Lett. 2019;19(6):3618. doi:10.1021/acs.nanolett.9b00630
  • Lu C, Han LB, Wang JN, Wan JC, Song GS, Rao JH. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev. 2021;50(14):8102. doi:10.1039/d0cs00260g
  • Stirrat CG, Alam SR, MacGillivray TJ, et al. Ultrasmall supraparamagnetic particles of iron oxide-enhanced magnetic resonance imaging in the assessment of cellular inflammation after myocardial infarction. Circulation. 2014;130:A17328. doi:10.1161/circ.130.suppl_2.17328
  • Wang QY, Ma XB, Liao HW, et al. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano. 2020;14(2):2053. doi:10.1021/acsnano.9b08660
  • Khandhar AP, Ferguson RM, Arami H, Krishnan KM. Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials. 2013;34(15):3837. doi:10.1016/j.biomaterials.2013.01.087
  • Ferguson RM, Minard KR, Khandhar AP, Krishnan KM. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys. 2011;38(3):1619. doi:10.1118/1.3554646
  • Ferguson RM, Minard KR, Krishnan KM. Optimization of nanoparticle core size for magnetic particle imaging. J Magn Magn Mater. 2009;321(10):1548. doi:10.1016/j.jmmm.2009.02.083
  • Shen LZ, Li B, Qiao YS. Fe3O4 Nanoparticles in targeted drug/gene delivery systems. Materials. 2018;11(2):324. doi:10.3390/Ma11020324
  • Stephen ZR, Dayringer CJ, Lim JJ, et al. Approach to rapid synthesis and functionalization of iron oxide nanoparticles for high gene transfection. ACS Appl Mater Interfaces. 2016;8(10):6320. doi:10.1021/acsami.5b10883
  • Jin YS, Ma XB, Zhang S, et al. A tantalum oxide-based core/shell nanoparticle for triple-modality image-guided chemo-thermal synergetic therapy of esophageal carcinoma. Cancer Lett. 2017;397:61. doi:10.1016/j.canlet.2017.03.030
  • Jin YS, Wang K, Tian J. Preoperative examination and intraoperative identification of hepatocellular carcinoma using a targeted bimodal imaging probe. Bioconjug Chem. 2018;29(4):1475. doi:10.1021/acs.bioconjchem.8b00161
  • van Dam GM, Koller M, Qiu SQ, et al. Phase II in-human dose escalation study of the optical molecular imaging tracer bevacizumab-800cw for molecular fluorescence guided surgery in primary breast cancer patients. Cancer Res. 2017;77:4. doi:10.1158/1538-7445.SABCS16-P4-01-01
  • Hain E, Lim C, Malek A, Salloum C, Azoulay D. Indocyanine green-fluorescence imaging in the assessment of intestinal viability during surgery: can fluorescence replace human eye? Ann Surg. 2017;265(4):E48. doi:10.1097/SLA.0000000000001170
  • van Dam GM, Themelis G, Crane LMA, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nature Med. 2011;17(10):1315. doi:10.1038/nm.2472
  • Zhang YQ, Liu WL, Luo XJ, et al. Novel self-assembled multifunctional nanoprobes for second-near-infrared-fluorescence-image-guided breast cancer surgery and enhanced radiotherapy efficacy. Adv Sci. 2023;10(10):e2205294. doi:10.1002/advs.202205294
  • Yang RQ, Wang PY, Lou KL, et al. Biodegradable nanoprobe for nir-ii fluorescence image-guided surgery and enhanced breast cancer radiotherapy efficacy. Adv Sci. 2022;9(12). doi:10.1002/Advs.202104728
  • Wang PY, Li JQ, Wei M, et al. Tumor-microenvironment triggered signal-to-noise boosting nanoprobes for NIR-IIb fluorescence imaging guided tumor surgery and NIR-II photothermal therapy. Biomaterials. 2022;287:121636. doi:10.1016/j.biomaterials.2022.121636
  • Ge RW, Kao C. Cell surface GRP78 as a death receptor and an anticancer drug target. Cancers. 2019;11(11):1787. doi:10.3390/Cancers11111787
  • Lee CH, Tsai HY, Chen CL, et al. Isoliquiritigenin inhibits gastric cancer stemness, modulates tumor microenvironment, and suppresses tumor growth through glucose-regulated protein 78 downregulation. Biomedicines. 2022;10(6):1350. doi:10.3390/biomedicines10061350
  • La XQ, Zhang LC, Yang YF, Li HQ, Song GS, Li ZY. Tumor-secreted GRP78 facilitates the migration of macrophages into tumors by promoting cytoskeleton remodeling. Cell Signal. 2019;60:1. doi:10.1016/j.cellsig.2019.04.004
  • Li ZW, Li ZY. Glucose regulated protein 78: a critical link between tumor microenvironment and cancer hallmarks. Biochim Biophys Acta. 2012;1826(1):13. doi:10.1016/j.bbcan.2012.02.001
  • Dauer P, Sharma NS, Gupta VK, et al. ER stress sensor, glucose regulatory protein 78 (GRP78) regulates redox status in pancreatic cancer thereby maintaining “stemness”. Cell Death Dis. 2019;10(2):132. doi:10.1038/s41419-019-1408-5
  • Ran DN, Mao JN, Shen Q, et al. GRP78 enabled micelle-based glioma targeted drug delivery. J Control Release. 2017;255:120. doi:10.1016/j.jconrel.2017.03.037
  • Zhao YD, Shi DD, Shang MM, et al. GRP78-targeted and doxorubicin-loaded nanodroplets combined with ultrasound: a potential novel theranostics for castration-resistant prostate cancer. Drug Deliv. 2022;29(1):203. doi:10.1080/10717544.2021.2023698
  • Jiang B, Zhang RF, Zhang JL, et al. GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy. Theranostics. 2019;9(8):2167. doi:10.7150/thno.30867
  • Farshbaf M, Khosroushahi AY, Mojarad-Jabali S, Zarebkohan A, Valizadeh H, Walker PR. Cell surface GRP78: an emerging imaging marker and therapeutic target for cancer. J Control Release. 2020;328:932. doi:10.1016/j.jconrel.2020.10.055
  • Liao YN, Liu Y, Xia XH, et al. Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in prostate cancer therapy. Theranostics. 2020;10(8):3366. doi:10.7150/thno.41849
  • Mantina M, Chamberlin AC, Valero R, Cramer CJ, Truhlar DG. Consistent van der Waals radii for the whole main group. J Phys Chem A. 2009;113(19):5806. doi:10.1021/jp8111556
  • Roper DK, Ahn W, Hoepfner M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J Phys Chem C. 2007;111(9):3636. doi:10.1021/jp064341w
  • Roberts LR, Sirlin CB, Zaiem F, et al. Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatology. 2018;67:401. doi:10.1002/hep.29487
  • Zhao C, Dai HY, Shao JW, et al. Accuracy of various forms of contrast-enhanced MRI for diagnosing hepatocellular carcinoma: a systematic review and meta-analysis. Front Oncol. 2021;11:680691. doi:10.3389/fonc.2021.680691
  • Semaan S, Violi NV, Lewis S. Hepatocellular carcinoma detection in liver cirrhosis: diagnostic performance of contrast-enhanced CT vs. MRI with extracellular contrast vs. gadoxetic acid. Eur Radiol. 2020;30:1020. doi:10.1007/s00330-019-06458-4
  • Huang AT, Du J, Liu ZY, et al. Sorafenib-loaded Cu2−xSe nanoparticles boost photothermal–synergistic targeted therapy against hepatocellular carcinoma. Nanomaterials. 2022;12(18):3191. doi:10.3390/nano12183191
  • Wang RX, Zhang SY, Lin YX, et al. Epithelial cell adhesion molecule-functionalized Fe3O4@Au nanoparticles for coregistered optoacoustic and magnetic resonance imaging and photothermal therapy of hepatocellular carcinoma. ACS Appl Nano Mater. 2022;5(8):10213. doi:10.1021/acsanm.2c01165
  • Liu XC, Zhu XY, Qi X, Meng XW, Xu K. Co-administration of iRGD with sorafenib-loaded iron-based metal-organic framework as a targeted ferroptosis agent for liver cancer therapy. Int J Nanomed. 2021;16:1037. doi:10.2147/IJN.S292528