297
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Critical Evaluation of Green Synthesized Silver Nanoparticles-Kaempferol for Antibacterial Activity Against Methicillin-Resistant Staphylococcus aureus

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1339-1350 | Received 18 Aug 2023, Accepted 26 Nov 2023, Published online: 08 Feb 2024

References

  • Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018;31(4):e00020–18. doi:10.1128/CMR.00020-18
  • Adnan SN, Ibrahim N, Yaacob WA. Disruption of Methicillin-resistant Staphylococcus aureus protein synthesis by tannins. Germs. 2017;7(4):186. doi:10.18683/germs.2017.1125
  • Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog. 2002;85(1):57–72. doi:10.3184/003685002783238870
  • Nataraj BH, Mallappa RH. Antibiotic resistance crisis: an update on antagonistic interactions between probiotics and methicillin-resistant staphylococcus aureus (MRSA. Currentmicrobio. 2021;78(6):2194–2211.
  • Deng SP, Zhang JY, Ma ZW, Wen S, Tan S, Cai JY. Facile synthesis of long-term stable silver nanoparticles by kaempferol and their enhanced antibacterial activity against Escherichia coli and Staphylococcus aureus. J Inorg Organomet Polym Mater. 2021;31(7):2766–2778.
  • Devi KP, Malar DS, Nabavi SF, et al. Kaempferol and inflammation: from chemistry to medicine. Pharmacol Res. 2015; 2015(99):1–10.
  • Hanafiah RM, Aqma WS, Yaacob WA, Said Z, Ibrahim N. Antibacterial and biofilm inhibition activities of Melastoma malabathricum stem bark extract against Streptococcus mutans. Malays j microbio. 2015;2015:1.
  • Mohamad Hanafiah R, Abd Ghafar SA, Lim V, Musa SNA, Yakop F, Hairil Anuar AH. Green synthesis, characterisation and antibacterial activities of strobilanthes crispus-mediated silver nanoparticles (SC-AGNPS) against selected bacteria. Artif Cells Nanomed Biotechnol. 2023;51(1):549–559.
  • Sampath G, Govarthanan M, Rameshkumar N, et al. Eco-friendly biosynthesis metallic silver nanoparticles using Aegle marmelos (Indian bael) and its clinical and environmental applications. Appl Nanosci. 2023;13(1):663–674.
  • Valarmathi N, Ameen F, Almansob A, Kumar P, Arunprakash S, Govarthanan M. Utilization of marine seaweed Spyridia filamentosa for silver nanoparticles synthesis and its clinical applications. Mater Lett. 2020;263:127244. doi:10.1016/j.matlet.2019.127244
  • Ameen F, Srinivasan P, Selvankumar T, et al. Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bioreductant and their broad-spectrum antibacterial activity. Bioorg Chem. 2019;88(102970):102970. doi:10.1016/j.bioorg.2019.102970
  • Mythili R, Selvankumar T, Kamala-Kannan S, et al. Utilization of market vegetable waste for silver nanoparticle synthesis and its antibacterial activity. Mater Lett. 2018;225:101–104. doi:10.1016/j.matlet.2018.04.111
  • Govarthanan M, Seo YS, Lee KJ, et al. Low-cost and eco-friendly synthesis of silver nanoparticles using coconut (Cocos nucifera) oil cake extract and its antibacterial activity. Artif Cells Nanomed Biotechnol. 2016;44(8):1878–1882. doi:10.3109/21691401.2015.1111230
  • Yakop F, Abd Ghafar SA, Yong YK, et al. Silver nanoparticles Clinacanthus Nutans leaves extract induced apoptosis towards oral squamous cell carcinoma cell lines. Artif Cells Nanomed Biotechnol. 2018;46(sup2):131–139. doi:10.1080/21691401.2018.1452750
  • Drew WL, Barry AL, O’Toole R, Sherris JC. Reliability of the Kirby-Bauer disc diffusion method for detecting methicillin-resistant strains of staphylococcus aureus. Appl Microbiol. 1972;24(2):240–247. doi:10.1128/am.24.2.240-247.1972
  • Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. Am Soc Microbiol. 2009;15:55–63.
  • Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: a review of case updating and clinical features. J Adv Res. 2020;21:169–176. doi:10.1016/j.jare.2019.10.005
  • Hanafiah RM, Kamaruddin KAC, Saikin NAA, et al. Antibacterial properties of clinacanthus nutans extracts against porphyromonas gingivalis and aggregatibacter actinomycetemcomitans: an in-vitro study. J Int Dent Medical Res. 2019;19:1
  • Giuliano C, Patel CR, Kale-Pradhan PB. A guide to bacterial culture identification and results interpretation. Pharm Ther. 2019;44(4):192. doi:10.1017/ice.2016.82
  • Abd Ghafar SA, Salehuddin NS, Abdul Rahman NZ, Halib N, Mohamad Hanafiah R. Transcriptomic profile analysis of Streptococcus mutans response to Acmella paniculata flower extracts. Evid Based Complement Alternat Med. 2022;2022:1–14. doi:10.1155/2022/7767940
  • Rani R, Sharma D, Chaturvedi M, Yadav JP. Antibacterial activity of twenty different endophytic fungi isolated from Calotropis procera and time-kill assay. Clin Microbiol. 2017;6(3):280. doi:10.4172/2327-5073.1000280
  • Mat Yusuf SNA, Che Mood CNA, Ahmad NH, Sandai D, Lee CK, Lim V. Optimization of biogenic synthesis of silver nanoparticles from flavonoid-rich Clinacanthus nutans leaf and stem aqueous extracts. Royal Soc Open Sci. 2020;7(7):200065. doi:10.1098/rsos.200065
  • Monshi A, Foroughi MR, Monshi MR. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng. 2012;2(3):154–160. doi:10.4236/wjnse.2012.23020
  • Shami AY, Almasri RA. Research article bacteriostatic and bactericidal activity of deer musk on multidrug resistance bacteria. Pak. J Biol Sci. 2018;21:331–339.
  • González AL, Noguez C. Size, shape, stability, and color of plasmonic silver nanoparticles. J Phys Chem. 2014;118(17):9128–9136. doi:10.1021/jp5014434
  • Raveendran P, Fu J, Wallen SLJAVKS. Silver nanoparticles: green synthesis and their antimicrobial activities. Chem Soc. 2003;125(46):13940. doi:10.1021/ja029267j
  • Vijayaraghavan K, Nalini SK. Biotemplates in the green synthesis of silver nanoparticles. Biotechnol J. 2010;5(10):1098–1110. doi:10.1002/biot.201000167
  • Pietta PG. Flavonoids as antioxidants. J Natural Prod. 2000;63(7):1035–1042. doi:10.1021/np9904509
  • Ambika S, Sundrarajan M. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J Photochem Photobiol B Biol. 2015;146:52–57. doi:10.1016/j.jphotobiol.2015.02.020
  • Abdelhalim MAK, Mady MM. Physical properties of different gold nanoparticles: ultraviolet-visible and fluorescence measurements. J Nanomed Nanotechnol. 2012;3(3):178–194. doi:10.4172/2157-7439.1000133
  • Ghorbani HR, Safekordi AA, Attar H, Sorkhabadi SM. Biological and non-biological methods for silver nanoparticles synthesis. Chem Biochem Eng Q. 2011;25(3):317–326.
  • Priyadarshini S, Gopinath V, Priyadharsshini NM, MubarakAli D, Velusamy P. Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf. 2013;102:232–237. doi:10.1016/j.colsurfb.2012.08.018
  • Qing YA, Cheng L, Li R, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification. Int J Nanomed. 2018;13:3311–3327. doi:10.2147/IJN.S165125
  • More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M. Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms. 2023;11(2):369. doi:10.3390/microorganisms11020369
  • Chartarrayawadee W, Charoensin P, Saenma J, et al. Green synthesis and stabilization of silver nanoparticles using Lysimachia foenum-graecum Hance extract and their antibacterial activity. Green Process Synth. 2020;9(1):107–118. doi:10.1515/gps-2020-0012
  • Kannanoor M, Lakshmi BA, Kim S. Synthesis of silver nanoparticles conjugated with kaempferol and hydrocortisone and an evaluation of their antibacterial effects. Biotechnol Prog. 2021;11(7):317.
  • Schmidt R. (2014). Re: why is there a difference in the crystalline size of the nanoparticle as measured from TEM image and XRD analysis of the same sample?; Available from: https://www.researchgate.net/post/Why-is-there-a-difference-in-the-crystalline-size-of-the-nanoparticle-as-measured-from-TEM-image-and-XRD-analysis-of-the-same-sample/535b9d33d3df3e84118b4674/citation/download.Accessed January 30, 2024.
  • Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem. 2012;47(12):2405–2410.
  • Al-Zahrani S, Astudillo-Calderón S, Pintos B, et al. Role of synthetic plant extracts on the production of silver-derived nanoparticles. Plants. 2021;10(8):1671. doi:10.3390/plants10081671
  • Tanase C, Berta L, Mare A, et al. Biosynthesis of silver nanoparticles using aqueous bark extract of Picea abies Land their antibacterial activity. Eur J Wood Prod. 2020;78(2):281–291.
  • Potbhare AK, Umekar MS, Chouke PB, et al. Bioinspired graphene-based silver nanoparticles: fabrication, characterization and antibacterial activity. Mater Today Proc. 2020;29:720–725.
  • Potbhare AK, Chaudhary RG, Chouke PB, et al. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. Mater Sci Eng C. 2019;99:783–793. doi:10.1016/j.msec.2019.02.010
  • Chaudhary RG, Bhusari GS, Tiple AD, et al. Metal/metal oxide nanoparticles: toxicity, applications, and future prospects. Curr Pharm Des. 2019;25(37):4013–4029.
  • Golabiazar R, Othman KI, Khalid KM, Maruf DH, Aulla SM, Yusif PA. Green synthesis, characterization, and investigation antibacterial activity of silver nanoparticles using Pistacia atlantica leaf extract. Bionanoscience. 2019;9(2):323–333.