164
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Characterization of Nanohybridosomes from Lipids and Spruce Homogenate Containing Extracellular Vesicles

ORCID Icon, , , , ORCID Icon, , , , , , & ORCID Icon show all
Pages 1709-1721 | Received 28 Jul 2023, Accepted 15 Dec 2023, Published online: 21 Feb 2024

References

  • Kooijmans SAA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int j Nanomed. 2012;7:1525–1541. doi:10.2147/IJN.S29661
  • Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016;36(3):301–312. doi:10.1007/s10571-016-0366-z
  • Bao G, Mitragotri S, Tong S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng. 2013;15:253–282. doi:10.1146/annurev-bioeng-071812-152409
  • Fais S, O’Driscoll L, Borras FE, et al. Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano. 2016;10(4):3886–3899. doi:10.1021/acsnano.5b08015
  • Mashima R, Takada S. Lipid nanoparticles: a novel gene delivery technique for clinical application. Curr Issues Mol Biol. 2022;44(10):5013–5027. doi:10.3390/cimb44100341
  • Yáñez-Mó M, Siljander PR-M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. doi:10.3402/jev.v4.27066
  • Burnouf T, Agrahari V, Agrahari V. Extracellular vesicles as nanomedicine: hopes and hurdles in clinical translation. Int J Nanomed. 2019;14:8847–8859. doi:10.2147/IJN.S225453
  • Zhang Y, Dou Y, Liu Y, et al. Advances in therapeutic applications of extracellular vesicles. Int J Nanomed. 2023;18:3285–3307. doi:10.2147/IJN.S409588
  • Yuan YG, Wang JL, Zhang YX, Li L, Reza AMMT, Biogenesis GS. Composition and potential therapeutic applications of mesenchymal stem cells derived exosomes in various diseases. Int J Nanomed. 2023;18:3177–3210. doi:10.2147/IJN.S407029
  • Dong J, Wu B, Tian W. Preparation of apoptotic extracellular vesicles from adipose tissue and their efficacy in promoting high-quality skin wound healing. Int J Nanomed. 2023;18:2923–2938. doi:10.2147/IJN.S411819
  • Jing S, Li H, Xu H. Mesenchymal stem cell derived exosomes therapy in diabetic wound repair. Int J Nanomed. 2023;18:2707–2720. doi:10.2147/IJN.S411562
  • Kim SJ, Puranik N, Yadav D, Jin JO, Lee PC. Lipid nanocarrier-based drug delivery systems: therapeutic advances in the treatment of lung cancer. Int J Nanomed. 2023;18:2659–2676. doi:10.2147/IJN.S406415
  • Emam SE, Ando H, Abu Lila AS, et al. A novel strategy to increase the yield of exosomes (Extracellular Vesicles) for an expansion of basic research. Biol Pharm Bull. 2018;41(5):733–742. doi:10.1248/bpb.b17-00919
  • Kurbangaleeva SV, Syromiatnikova VY, Prokopeva AE, et al. Increased yield of extracellular vesicles after cytochalasin B treatment and vortexing. Curr Issues Mol Biol. 2023;45:2431–2443. doi:10.3390/cimb45030158
  • Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. doi:10.1016/j.heliyon.2022.e09394
  • Betz G, Aeppli A, Menshutina N, Leuenberger H. In vivo comparison of various liposome formulations for cosmetic application. Int J Pharm. 2005;296(1–2):44–54. doi:10.1016/j.ijpharm.2005.02.032
  • Budai L, Kaszás N, Gróf P, et al. Liposomes for topical use: a physico-chemical comparison of vesicles prepared from egg or soy lecithin. Sci Pharm. 2013;81(4):1151–1166. doi:10.3797/scipharm.1305-11
  • Lombardo D, Kiselev MA. Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics. 2022;14(3):543. doi:10.3390/pharmaceutics14030543
  • Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface. 2014;11(101):20140459. doi:10.1098/rsif.2014.0459
  • Takahashi M, Inafuku K, Miyagi T, et al. Efficient preparation of liposomes encapsulating food materials using lecithins by a mechanochemical method. J Oleo Sci. 2006;56(1):35–42. doi:10.5650/jos.56.35
  • Zhang N, Ping QN, Huang GH, Xu WF. Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int J Pharm. 2005;294(1–2):247–259. doi:10.1016/j.ijpharm.2005.01.018
  • Meure LA, Foster NR, Dehghani F. Conventional and dense gas techniques for the production of liposomes: a review. AAPS Pharm Sci Tech. 2008;9(3):798–809. doi:10.1208/s12249-008-9097-x
  • Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT. Lipid nanoparticles as carriers for bioactive delivery. Front Chem. 2021;9:580118. doi:10.3389/fchem.2021.580118
  • Huyan T, Hongduo L, Peng H, et al. Extracellular vesicles – advanced nanocarriers in cancer therapy: progress and achievements. Int j Nanomed. 2020;15:6485–6502. doi:10.2147/IJN.S238099
  • Le TT, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305–306. doi:10.1038/d41573-020-00151-8
  • Estes S, Konstantinov K, Young JD. Manufactured extracellular vesicles as human therapeutics: challenges, advances, and opportunities. Curr Opin Biotechnol. 2022;77:102776. doi:10.1016/j.copbio.2022.102776
  • Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021;16(7):748–759. doi:10.1038/s41565-021-00931-2
  • Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems. ACS Nano. 2018;12(7):6830–6842. doi:10.1021/acsnano.8b02053
  • Belliveau NM, Huft J, Lin PJ, et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids. 2012;1(8):e37. doi:10.1038/mtna.2012.28
  • Maurer N, Wong KF, Stark H, et al. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys J. 2001;80(5):2310–2326. doi:10.1016/S0006-3495(01)76202-9
  • Marcus ME, Leonard JN. FedExosomes: engineering therapeutic biological nanoparticles that truly deliver. Pharmaceuticals Basel. 2013;6(5):659–680. doi:10.3390/ph6050659
  • Rome S. Biological properties of plant-derived extracellular vesicles. Food Funct. 2019;10(2):529–538. doi:10.1039/C8FO02295J
  • Woith E, Guerriero G, Hausman JF, et al. Plant extracellular vesicles and nanovesicles: focus on secondary metabolites, proteins and lipids with perspectives on their potential and sources. Int J Mol Sci. 2021;22(7):3719. doi:10.3390/ijms22073719
  • Choi J, Lee DH, Jang H, Park SY, Seol JW. Naringenin exerts anticancer effects by inducing tumor cell death and inhibiting angiogenesis in malignant melanoma. Int J Med Sci. 2020;17(18):3049–3057. doi:10.7150/ijms.44804
  • Ju S, Mu J, Dokland T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345–1357. doi:10.1038/mt.2013.64
  • Liu B, Lu Y, Chen X, et al. Protective role of shiitake mushroom-derived exosome-like nanoparticles in D-galactosamine and lipopolysaccharide-induced acute liver injury in mice. Nutrients. 2020;12(2):477. doi:10.3390/nu12020477
  • Yepes-Molina L, Pérez-Jiménez MI, Martínez-Esparza M, et al. Membrane vesicles for nanoencapsulated sulforaphane increased their anti-inflammatory role on an in vitro human macrophage. Model Int J Mol Sci. 2022;23(4):1940. doi:10.3390/ijms23041940
  • Kamaitytė-Bukelskienė L, Ložienė K, Labokas J. Dynamics of isomeric and enantiomeric fractions of pinene in essential oil of Picea abies annual needles during growing season. Molecules. 2021;26(8):2138. doi:10.3390/molecules26082138
  • Gupta A, Jeyakumar E, Lawrence R. Journey of limonene as an antimicrobial agent. J Pure Appl Microbiol. 2021;15(3):1094–1110. doi:10.22207/JPAM.15.3.01
  • van Zyl RL, Seatlholo ST, van Vuuren SF, Viljoen AM. The biological activities of 20 nature identical essential oil constituents. J Essent Oil Res. 2006;18(1):129–133. doi:10.1080/10412905.2006.12067134
  • Aydin E, Türkez H, Geyikoğlu F. Antioxidative, anticancer and genotoxic properties of α-pinene on N2a neuroblastoma cells. Biologia. 2013;68:1004–1009. doi:10.2478/s11756-013-0230-2
  • Bae GS, Park KC, Choi SB, et al. Protective effects of alpha-pinene in mice with cerulein-induced acute pancreatitis. Life Sci. 2012;91(17–18):866–871. doi:10.1016/j.lfs.2012.08.035
  • Kovač J, Šimunović K, Wu Z, et al. Antibiotic resistance modulation and modes of action of (-)-α-pinene in Campylobacter jejuni. PLoS One. 2015;10(4):e0122871. doi:10.1371/journal.pone.0122871
  • Salehi B, Upadhyay S, Erdogan Orhan I, et al. Therapeutic potential of α- and β-pinene: a miracle gift of nature. Biomolecules. 2019;9(11):738. doi:10.3390/biom9110738
  • Zhang Z, Guo S, Liu X, Gao X. Synergistic antitumor effect of α-pinene and β-pinene with paclitaxel against non-small-cell lung carcinoma (NSCLC). Drug Res. 2015;65(4):214–218. doi:10.1055/s-0034-1377025
  • Jeran M, Božič D, Urban N, et al. European spruce (Picea Abies) as a possible sustainable source of cellular vesicles and biologically active compounds. Proc Socrat Lect. 2021;5:104–113.
  • Kralj-Iglič V, Arrigler V, Bedina Zavec A, et al. Raw data on interferometric light microscopy assessment of small cellular particles isolated from blood plasma, washed erythrocytes, spruce needle homogenate, suspension of flagellae of microalgae Tetraselmis chuii, conditioned culture media of microalgae Phaeodactylum tricornutum and liposomes; 2020.
  • Kralj-Iglič V, Hočevar M, Iglič A, Jeran M, Romolo A. Scanning electron microscope images of spruce needle homogenate and scanning electron microscope images of isolated small cellular particles from spruce needle homogenate [Data set]. Int J Mol Sci. 2023;1. doi:10.5281/zenodo.7437856
  • Mantile F, Kisovec M, Adamo G, et al. A novel localization in human large extracellular vesicles for the EGF-CFC founder member CRIPTO and its biological and therapeutic implications. Cancers. 2022;14(15):3700. doi:10.3390/cancers14153700
  • Łukawski M, Dałek P, Borowik T, et al. New oral liposomal vitamin C formulation: properties and bioavailability. J Liposome Res. 2020;30(3):227–234. doi:10.1080/08982104.2019.1630642
  • Škufca D, Božič D, Hočevar M, et al. Interaction between Microalgae P. tricornutum and Bacteria Thalassospira Sp. For Removal of Bisphenols from Conditioned Media. Int J Mol Sci. 2022;23(15):8447. doi:10.3390/ijms23158447
  • Schärtl W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions. Berlin, Heidelberg: Springer Verlag; 2007.
  • Kratochvil P. Particle scattering functions. In: Huglin MB, editor. Particle Scattering Functions in Light Scattering from Polymer Solutions. London and New York: Academic Press Inc; 1972:333–384.
  • Bickel WS, Yousif HA, Bailey WM. Masking of information in light scattering signals from complex scatterers. Aerosol Sci Technol. 1982;1:329–335. doi:10.1080/02786828208958598
  • Kato H, Nakamura A, Kinugasa S. Effects of angular dependency of particulate light scattering intensity on determination of samples with bimodal size distributions using dynamic light scattering methods. Nanomaterials. 2018;8(9):708. doi:10.3390/nano8090708
  • Tomsiè N, Babnik B, Lombardo D, et al. Shape and size of giant unilamellar phospholipid vesicles containing cardiolipin. J Chem Inf Model. 2005;45(6):1676–1679. doi:10.1021/ci050188b
  • Urbanija J, Tomsic N, Lokar M, et al. Coalescence of phospholipid membranes as a possible origin of anticoagulant effect of serum proteins. Chemist Phys Lipid. 2007;150(1):49–57. doi:10.1016/j.chemphyslip.2007.06.216
  • Gudbergsson JM, Johnsen KB, Skov MN, Duroux M. Systematic review of factors influencing extracellular vesicle yield from cell cultures. Cytotechnology. 2016;68(4):579–592. doi:10.1007/s10616-015-9913-6
  • Brennan K, Martin K, FitzGerald SP, et al. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep. 2020;10(1):1039. doi:10.1038/s41598-020-57497-7
  • Momen-Heravi F, Balaj L, Alian S, et al. Current methods for the isolation of extracellular vesicles. Biol Chem. 2013;394(10):1253–1262. doi:10.1515/hsz-2013-0141
  • Romolo A, Jan Z, Bedina Zavec A, et al. Assessment of small cellular particles from four different natural sources and liposomes by interferometric light microscopy. Int J Mol Sci. 2022;23(24):15801. doi:10.3390/ijms232415801
  • Romolo A, Hočevar M, Iglič A, Griessler Bulc T, Kralj-Iglič V. Short term effect of plant hybridosomes on growth of phaeodactylum tricornutum culture. Proceed Socrat Lect. 2023;8:74–86.
  • Boccara M, Fedala Y, Bryan CV, Bailly-Bechet M, Bowler C, Boccara AC. Full-field interferometry for counting and differentiating aquatic biotic nanoparticles: from laboratory to Tara Oceans. Biomed Opt Express. 2016;7(9):3736–3746. doi:10.1364/BOE.7.003736
  • Roose-Amsaleg C, Fedala Y, Vénien-Bryan C, Garnier J, Boccara AC, Boccara M. Utilization of interferometric light microscopy for the rapid analysis of virus abundance in a river. Res Microbiol. 2017;168(5):413–418. doi:10.1016/j.resmic.2017.02.004
  • Turkki V, Alppila E, Ylä-Herttuala S, Lesch HP. Experimental evaluation of an interferometric light microscopy particle counter for titering and characterization of virus preparations. Viruses. 2021;13(5):939. doi:10.3390/v13050939
  • Sausset R, Krupova Z, Guédon E, et al. Comparison of interferometric light microscopy with nanoparticle tracking analysis for the study of extracellular vesicles and bacteriophages. J Extracell Biol. 2023;2(2):e75. doi:10.1002/jex2.75
  • Welsh JA, Jones JC, Tang VA. Fluorescence and light scatter calibration allow comparisons of small particle data in standard units across different flow cytometry platforms and detector settings. Cytometry Part A. 2020;97A:592–601. doi:10.1002/cyto.a.24029