164
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Bacteria-Targeting Nanoparticles with ROS-Responsive Antibiotic Release to Eradicate Biofilms and Drug-Resistant Bacteria in Endophthalmitis

, ORCID Icon, , , &
Pages 2939-2956 | Received 11 Aug 2023, Accepted 10 Mar 2024, Published online: 20 Mar 2024

References

  • Miller FC, Coburn PS, Huzzatul MM, LaGrow AL, Livingston E, Callegan MC. Targets of immunomodulation in bacterial endophthalmitis. Prog Retinal Eye Res. 2019;73:100763. doi:10.1016/j.preteyeres.2019.05.004
  • Durand ML. Bacterial and fungal endophthalmitis. Clin Microbiol Rev. 2017;30(3):597–613. doi:10.1128/CMR.00113-16
  • Brockhaus L, Goldblum D, Eggenschwiler L, Zimmerli S, Marzolini C. Revisiting systemic treatment of bacterial endophthalmitis: a review of intravitreal penetration of systemic antibiotics. Clin Microbiol Infect. 2019;25(11):1364–1369. doi:10.1016/j.cmi.2019.01.017
  • Lodha D, Karolia R, Sharma S, Joseph J, Das T, Dave VP. Biofilm formation and its effect on the management of culture-positive bacterial endophthalmitis. Indian J Ophthalmol. 2022;70(2):472–476. doi:10.4103/ijo.IJO_1872_21
  • Holland EJ, McDonald MB, Parekh JG, Sheppard JD. Antibiotic resistance in acute postoperative endophthalmitis. Ophthalmology. 2014;121(11):S1–9; quiz S10–12. doi:10.1016/j.ophtha.2014.06.049
  • Bispo P, Haas W, Gilmore M. Biofilms in Infections of the Eye. Pathogens. 2015;4(1):111–136. doi:10.3390/pathogens4010111
  • Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–138. doi:10.1016/s0140-6736(01)05321-1
  • Hu D, Li H, Wang B, et al. Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant staphylococcus aureus biofilm. ACS Nano. 2017;11(9):9330–9339. doi:10.1021/acsnano.7b04731
  • Liu Y, Shi L, Su L, et al. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev. 2019;48(2):428–446. doi:10.1039/c7cs00807d
  • Wang Y, Jin Y, Chen W, et al. Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem Eng J. 2019;358:74–90. doi:10.1016/j.cej.2018.10.002
  • Nasrabadi M, Ghasemzadeh MA, Zand Monfared MR. The preparation and characterization of UiO-66 metal–organic frameworks for the delivery of the drug ciprofloxacin and an evaluation of their antibacterial activities. New J Chem. 2019;43(40):16033–16040. doi:10.1039/C9NJ03216A
  • Bowen RC, Zhou AX, Bondalapati S, et al. Comparative analysis of the safety and efficacy of intracameral cefuroxime, moxifloxacin and vancomycin at the end of cataract surgery: a meta-analysis. Br J Ophthalmol. 2018;102(9):1268–1276. doi:10.1136/bjophthalmol-2017-311051
  • Chen H, Yang J, Sun L, et al. Synergistic chemotherapy and photodynamic therapy of endophthalmitis mediated by zeolitic imidazolate framework‐based drug delivery systems. Small. 2019;15(47):1903880. doi:10.1002/smll.201903880
  • Zhang W, Liang L, Yuan X, et al. Intelligent dual responsive modified ZIF-8 nanoparticles for diagnosis and treatment of osteoarthritis. Mater Des. 2021;209:109964. doi:10.1016/j.matdes.2021.109964
  • Su L, Li Y, Liu Y. Antifungal-inbuilt metal–organic-frameworks eradicate candida albicans biofilms. Adv Funct Mater. 2020;30(28):2000537. doi:10.1002/adfm.202000537
  • Lollar CT, Qin J-S, Pang J, Yuan S, Becker B, Zhou H-C. Interior decoration of stable metal–organic frameworks. Langmuir. 2018;34(46):13795–13807. doi:10.1021/acs.langmuir.8b00823
  • Li P, Vermeulen NA, Gong X, et al. Design and synthesis of a water-stable anionic uranium-based Metal-Organic Framework (MOF) with ultra large pores. Angew Chem Int Ed. 2016;55(35):10358–10362. doi:10.1002/anie.201605547
  • Kandiah M, Nilsen MH, Usseglio S. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem Mater. 2010;22(24):6632–6640. doi:10.1021/cm102601v
  • He L, Brasino M, Mao C, et al. DNA‐assembled core‐satellite upconverting‐metal–organic framework nanoparticle superstructures for efficient photodynamic therapy. Small. 2017;13(24):1700504. doi:10.1002/smll.201700504
  • Cavka JH, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc. 2008;130(42):13850–13851. doi:10.1021/ja8057953
  • Mao J, Li Y, Wu T, et al. A simple dual-pH responsive prodrug-based polymeric micelles for drug delivery. ACS Appl Mater Interfaces. 2016;8(27):17109–17117. doi:10.1021/acsami.6b04247
  • Zhan Y, Hu X, Li Y, et al. Antimicrobial hybrid amphiphile via dynamic covalent bonds enables bacterial biofilm dispersal and bacteria eradication. Adv Funct Mater. 2023;33(23):2214299. doi:10.1002/adfm.202214299
  • Hu X, Li Y, Piao Y. Two-tailed dynamic covalent amphiphile combats bacterial biofilms. Adv Mater. 2023;35(33):e2301623. doi:10.1002/adma.202301623
  • Shi Y, van Steenbergen MJ, Teunissen EA, et al. Π–Π stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs. Biomacromolecules. 2013;14(6):1826–1837. doi:10.1021/bm400234c
  • Nguyen MM, Carlini AS, Chien M-P, et al. Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv Mater. 2015;27(37):5547–5552. doi:10.1002/adma.201502003
  • Chen L, Peng M, Zhou J, et al. Supramolecular photothermal cascade nano-reactor enables photothermal effect, cascade reaction, and in situ hydrogelation for biofilm-associated tooth-extraction wound healing. Adv Mater. 2023;35(31):e2301664. doi:10.1002/adma.202301664
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003. doi:10.1038/nmat3776
  • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signaling. 2014;20(7):1126–1167. doi:10.1089/ars.2012.5149
  • Kim Y, Uthaman S, Pillarisetti S, Noh K, Huh KM, Park I-K. Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy. Acta Biomater. 2020;108:273–284. doi:10.1016/j.actbio.2020.03.027
  • Jin F, Qi J, Liu D, et al. Cancer-cell-biomimetic upconversion nanoparticles combining chemo-photodynamic therapy and CD73 blockade for metastatic triple-negative breast cancer. J Control Release. 2021;337:90–104. doi:10.1016/j.jconrel.2021.07.021
  • Zhao Y, Xie R, Yodsanit N, Ye M, Wang Y, Gong S. Biomimetic fibrin-targeted and H2O2-responsive nanocarriers for thrombus therapy. Nano Today. 2020;35:100986. doi:10.1016/j.nantod.2020.100986
  • Zhu Y, Yao Z, Liu Y, Zhang W, Geng L, Ni T. Incorporation of ROS-responsive substance P-loaded zeolite imidazolate framework-8 nanoparticles into a Ca2+-cross-linked alginate/pectin hydrogel for wound dressing applications. Int J Nanomed. 2020;15:333–346. doi:10.2147/IJN.S225197
  • Pei P, Sun C, Tao W, Li J, Yang X, Wang J. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials. 2019;188:74–82. doi:10.1016/j.biomaterials.2018.10.010
  • Ling X, Zhang S, Shao P, Wang P, Ma X, Bai M. Synthesis of a reactive oxygen species responsive heterobifunctional thioketal linker. Tetrahedron Lett. 2015;56(37):5242–5244. doi:10.1016/j.tetlet.2015.07.059
  • Li J, Ding Z, Li Y. Reactive oxygen species-sensitive thioketal-linked mesoporous silica nanoparticles as drug carrier for effective antibacterial activity. Mater Des. 2020;195:109021. doi:10.1016/j.matdes.2020.109021
  • Chung PY, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect. 2017;50(4):405–410. doi:10.1016/j.jmii.2016.12.005
  • Singh R, Prasad A, Kumar B, Kumari S, Sahu RK, Hedau ST. Hedau, potential of dual drug delivery systems: MOF as hybrid nanocarrier for dual drug delivery in cancer treatment. ChemistrySelect. 2022;7(36):e202201288. doi:10.1002/slct.202201288
  • Chansi, Upreti S, Punya, Singh J, Ghosh MP, Basu T. Rapid electrochemical quantification for in vitro release trait of ophthalmic drug loaded within Mucoadhesive Metal Organic Framework (MOF). ChemistrySelect. 2021;6(12):3006–3012. doi:10.1002/slct.202004558
  • Ung L, Pattamatta U, Carnt N, Wilkinson-Berka JL, Liew G, White AR. Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci. 2017;131(24):2865–2883. doi:10.1042/CS20171246
  • Singh PK, Kumar A, Kumar A. Molecular mechanisms of retinal cell death in Staphylococcus aureus endophthalmitis. Invest Ophthalmol Visual Sci. 2015;56:872.
  • Mursalin MH, Coburn PS, Miller FC, Livingston ET, Astley R, Callegan MC. Innate immune interference attenuates inflammation in bacillus endophthalmitis. Invest Opthalmol Visual Sci. 2020;61(13):17. doi:10.1167/iovs.61.13.17
  • Miyake H, Miyazaki D, Shimizu Y, et al. Toxicities of and inflammatory responses to moxifloxacin, cefuroxime, and vancomycin on retinal vascular cells. Sci Rep. 2019;9(1):9745. doi:10.1038/s41598-019-46236-2
  • Saeed S, Zafar J, Khan B, et al. Utility of 99mTc-labelled antimicrobial peptide ubiquicidin (29-41) in the diagnosis of diabetic foot infection. Eur J Nucl Med Mol Imag. 2013;40(5):737–743. doi:10.1007/s00259-012-2327-1
  • Yang S, Han X, Yang Y, et al. Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular staphylococcus aureus and associated infection. ACS Appl Mater Interfaces. 2018;10(17):14299–14311. doi:10.1021/acsami.7b15678
  • Jarai BM, Stillman Z, Attia L, Decker GE, Bloch ED, Fromen CA. Evaluating UiO-66 metal–organic framework nanoparticles as acid-sensitive carriers for pulmonary drug delivery applications. ACS Appl Mater Interfaces. 2020;12(35):38989–39004. doi:10.1021/acsami.0c10900