453
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Research Progress of SN38 Drug Delivery System in Cancer Treatment

ORCID Icon, , , &
Pages 945-964 | Received 14 Aug 2023, Accepted 22 Dec 2023, Published online: 26 Jan 2024

References

  • Liu YQ, Li WQ, Morris-Natschke SL, et al. Perspectives on biologically active camptothecin derivatives. Med Res Rev. 2015;35(4):753–789. doi:10.1002/med.21342
  • Li QY, Zu YG, Shi RZ, et al. Review camptothecin: current perspectives. Curr Med Chem. 2006;13(17):2021–2039. doi:10.2174/092986706777585004
  • Legarza K, Yang LX. Novel camptothecin derivatives. Vivo. 2005;19(1):283–292.
  • Yang Q, Pu Q, Wang KY, et al. Preparation and antitumor study of hyaluronic acid-modified 7-ethyl-10-hydroxycamptothecin nanosuspension. Chin J Hospital Pharm. 2022;42(15):1518–22+67.
  • Kurita A, Kado S, Kaneda N, et al. Alleviation of side effects induced by irinotecan hydrochloride (CPT-11) in rats by intravenous infusion. Cancer Chemother Pharmacol. 2003;52(5):349–360. doi:10.1007/s00280-003-0682-0
  • Li DD. Construction and in vitro Evaluation of folic Acid Modified SN38 Prodrug Self-Assembled Micelle Delivery System. Chongqing University of Technology; 2021.
  • Gu Q, Xing JZ, Huang M, et al. SN-38 loaded polymeric micelles to enhance cancer therapy. Nanotechnology. 2012;23(20):205101. doi:10.1088/0957-4484/23/20/205101
  • Si J, Zhao X, Gao S, et al. Advances in delivery of Irinotecan (CPT-11) active metabolite 7-ethyl-10-hydroxycamptothecin. Int J Pharm. 2019;568:118499. doi:10.1016/j.ijpharm.2019.118499
  • Deng CY, Jiang CJ, Zhang XM, et al. Research progress on SN38 prodrug and its new dosage forms. China Pharm. 2016;27(28):4005–4009.
  • Meyer-Losic F, Nicolazzi C, Quinonero J, et al. DTS-108, a novel peptidic prodrug of SN38: in vivo efficacy and toxicokinetic studies. Clin Cancer Res. 2008;14(7):2145–2153. doi:10.1158/1078-0432.CCR-07-4580
  • Jeong W, Park SR, Rapisarda A, et al. Weekly EZN-2208 (PEGylated SN-38) in combination with bevacizumab in patients with refractory solid tumors. Invest New Drugs. 2014;32(2):340–346. doi:10.1007/s10637-013-0048-3
  • Bardia A, Messersmith WA, Kio EA, et al. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase I/II IMMU-132-01 basket trial. Ann Oncol. 2021;32(6):746–756. doi:10.1016/j.annonc.2021.03.005
  • Sharkey RM, Govindan SV, Cardillo TM, et al. Selective and concentrated accretion of SN-38 with a CEACAM5-targeting Antibody-Drug Conjugate (ADC), Labetuzumab Govitecan (IMMU-130). Mol Cancer Ther. 2018;17(1):196–203. doi:10.1158/1535-7163.MCT-17-0442
  • Bala V, Rao S, Boyd BJ, et al. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J Control Release. 2013;172(1):48–61. doi:10.1016/j.jconrel.2013.07.022
  • Feng Y, Xu X, Mo R. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis. J China Pharm Univ. 2020;51(04):425–432.
  • Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target. 2016;24(3):179–191. doi:10.3109/1061186X.2015.1051049
  • Xu YH, Cao J. Perspectives on targeted nano-drug carriers for tumor treatment. J China Pharm Univ. 2013;44(06):494–503.
  • Uo N, Lu JQ, Li Y, et al. Research progress of polymer micelles as nano delivery carriers for anticancer drugs. J Tianjin Univ Sci Technol. 2022;37(04):71–80.
  • Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020;156:80–118. doi:10.1016/j.addr.2020.09.009
  • Zhang H, Wang J, Mao W, et al. Novel SN38 conjugate-forming nanoparticles as anticancer prodrug: in vitro and in vivo studies. J Control Release. 2013;166(2):147–158. doi:10.1016/j.jconrel.2012.12.019
  • Xie J, Zhang X, Teng M, et al. Synthesis, characterization, and evaluation of mPEG-SN38 and mPEG-PLA-SN38 micelles for cancer therapy. Int J Nanomed. 2016;11:1677–1686. doi:10.2147/IJN.S103110
  • Duan K, Zhang X, Tang X, et al. Fabrication of cationic nanomicelle from chitosan-graft-polycaprolactone as the carrier of 7-ethyl-10-hydroxy-camptothecin. Colloids Surf B Biointerfaces. 2010;76(2):475–482. doi:10.1016/j.colsurfb.2009.12.007
  • Sadat SMA, Vakili MR, Paiva IM, et al. Development of self-associating SN-38-conjugated Poly(ethylene oxide)-Poly(ester) micelles for colorectal cancer therapy. Pharmaceutics. 2020;12(11):1033. doi:10.3390/pharmaceutics12111033
  • Djurdjic B, Dimchevska S, Geskovski N, et al. Synthesis and self-assembly of amphiphilic poly(acrylicacid)-poly(varepsilon-caprolactone)-poly(acrylicacid) block copolymer as novel carrier for 7-ethyl-10-hydroxy camptothecin. J Biomater Appl. 2015;29(6):867–881. doi:10.1177/0885328214549612
  • Liu Y, Piao H, Gao Y, et al. Comparison of two self-assembled macromolecular prodrug micelles with different conjugate positions of SN38 for enhancing antitumor activity. Int J Nanomed. 2015;10:2295–2311. doi:10.2147/IJN.S77957
  • Nogueira E, Gomes AC, Preto A, et al. Design of liposomal formulations for cell targeting. Colloids Surf B Biointerfaces. 2015;136:514–526. doi:10.1016/j.colsurfb.2015.09.034
  • Sohail M, Guo W, Li Z, et al. Nanocarrier-based drug delivery system for cancer therapeutics: a review of the last decade. Curr Med Chem. 2021;28(19):3753–3772. doi:10.2174/0929867327666201005111722
  • Moosavian SA, Bianconi V, Pirro M, et al. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin Cancer Biol. 2021;69:337–348. doi:10.1016/j.semcancer.2019.09.025
  • Sharma G, Modgil A, Layek B, et al. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: biodistribution and transfection. J Control Release. 2013;167(1):1–10. doi:10.1016/j.jconrel.2013.01.016
  • Ashrafizadeh M, Delfi M, Zarrabi A, et al. Stimuli-responsive liposomal nanoformulations in cancer therapy: pre-clinical & clinical approaches. J Control Release. 2022;351:50–80. doi:10.1016/j.jconrel.2022.08.001
  • Wu C, Zhang Y, Yang D, et al. Novel SN38 derivative-based liposome as anticancer prodrug: an in vitro and in vivo study. Int J Nanomed. 2019;14:75–85. doi:10.2147/IJN.S187906
  • Fang T, Dong Y, Zhang X, et al. Integrating a novel SN38 prodrug into the PEGylated liposomal system as a robust platform for efficient cancer therapy in solid tumors. Int J Pharm. 2016;512(1):39–48. doi:10.1016/j.ijpharm.2016.08.036
  • Du Y, Zhang W, He R, et al. Dual 7-ethyl-10-hydroxycamptothecin conjugated phospholipid prodrug assembled liposomes with in vitro anticancer effects. Bioorg Med Chem. 2017;25(12):3247–3258. doi:10.1016/j.bmc.2017.04.025
  • Shirazi AS, Varshochian R, Rezaei M, et al. SN38 loaded nanostructured lipid carriers (NLCs); preparation and in vitro evaluations against glioblastoma. J Mater Sci Mater Med. 2021;32(7):78. doi:10.1007/s10856-021-06538-2
  • Liu H, Lu H, Liao L, et al. Lipid nanoparticles loaded with 7-ethyl-10-hydroxycamptothecin-phospholipid complex: in vitro and in vivo studies. Drug Deliv. 2015;22(6):701–709. doi:10.3109/10717544.2014.895069
  • Xing J, Zhang X, Wang Z, et al. Novel lipophilic SN38 prodrug forming stable liposomes for colorectal carcinoma therapy. Int J Nanomed. 2019;14:5201–5213. doi:10.2147/IJN.S204965
  • Xue M, Li XJ, Liu SH, et al. Progress of solid lipid nanoparticles in the study of traditional Chinese medicine. J Nanjing Univ Traditional Chin Med. 2012;28(06):597–600.
  • Li D, Jia YH, Zhou T, et al. Research progress in application of solid lipid nanoparticle drug carrier in tumor therapy. J Jilin Univ. 2020;46(01):200–204.
  • Mosallaei N, Mahmoudi A, Ghandehari H, et al. Solid lipid nanoparticles containing 7-ethyl-10-hydroxycamptothecin (SN38): preparation, characterization, in vitro, and in vivo evaluations. Eur J Pharm Biopharm. 2016;104:42–50. doi:10.1016/j.ejpb.2016.04.016
  • Yu KT. Preparation of Trastuzumab-Bearing Paclitaxel-Loaded Lipid Nanoparticles and Preliminary study of Targeting. Jilin University; 2017.
  • Cheng G, Zhang X, Chen Y, et al. Anticancer activity of polymeric nanoparticles containing linoleic acid-SN38 (LA-SN38) conjugate in a murine model of colorectal cancer. Colloids Surf B Biointerfaces. 2019;181:822–829. doi:10.1016/j.colsurfb.2019.06.020
  • Kianfar E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology. 2021;19(1):159.
  • Song C, Li F, Wang S, et al. Recent advances in particulate adjuvants for cancer vaccination. Adv Ther. 2019;3(5):1900115.
  • Xu LH, Xu XY, Xu JJ, et al. Research progress of surface modified albumin nanoparticles in tumor targeting therapy. Chin J Clin Pharmacol Ther. 2017;22(08):948–954.
  • Sepehri N, Rouhani H, Ghanbarpour AR, et al. Human serum albumin conjugates of 7-ethyl-10-hydroxycamptothecin (SN38) for cancer treatment. Biomed Res Int. 2014;2014:963507. doi:10.1155/2014/963507
  • Yao Y, Su X, Xie Y, et al. Synthesis, characterization, and antitumor evaluation of the albumin-SN38 conjugate. Anticancer Drugs. 2013;24(3):270–277. doi:10.1097/CAD.0b013e32835c3543
  • Biffi S, Voltan R, Bortot B, et al. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin Drug Deliv. 2019;16(5):481–496. doi:10.1080/17425247.2019.1604679
  • Ashique S, Sandhu NK, Chawla V, et al. Targeted drug delivery: trends and perspectives. Curr Drug Deliv. 2021;18(10):1435–1455. doi:10.2174/1567201818666210609161301
  • Nawaz FZ, Kipreos ET. Emerging roles for folate receptor FOLR1 in signaling and cancer. Trends Endocrinol Metab. 2022;33(3):159–174. doi:10.1016/j.tem.2021.12.003
  • Chaudhury A, Das S. Folate receptor targeted liposomes encapsulating anti-cancer drugs. Curr Pharm Biotechnol. 2015;16(4):333–343. doi:10.2174/1389201016666150118135107
  • Fang YP, Chuang CH, Wu YJ, et al. SN38-loaded <100 nm targeted liposomes for improving poor solubility and minimizing burst release and toxicity: in vitro and in vivo study. Int J Nanomed. 2018;13:2789–2802. doi:10.2147/IJN.S158426
  • Ebrahimnejad P, Dinarvand R, Sajadi A, et al. Preparation and in vitro evaluation of actively targetable nanoparticles for SN-38 delivery against HT-29 cell lines. Nanomedicine. 2010;6(3):478–485. doi:10.1016/j.nano.2009.10.003
  • Alibolandi M, Amel Farzad S, Mohammadi M, et al. Tetrac-decorated chitosan-coated PLGA nanoparticles as a new platform for targeted delivery of SN38. Artif Cells Nanomed Biotechnol. 2018;46(sup2):1003–1014. doi:10.1080/21691401.2018.1477789
  • Li Y, Xie M, Jones JB, et al. Targeted delivery of DNA topoisomerase inhibitor SN38 to intracranial tumors of glioblastoma using sub-5 ultrafine iron oxide nanoparticles. Adv Healthc Mater. 2022;11(14):e2102816. doi:10.1002/adhm.202102816
  • Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92(18):1472–1489. doi:10.1093/jnci/92.18.1472
  • Xue T, Xu P, Padelford J, et al. Actively targeted delivery of SN38 by ultrafine iron oxide nanoparticle for treating pancreatic cancer. Invest New Drugs. 2022;40(3):546–555. doi:10.1007/s10637-022-01231-9
  • Li Y, Wang Z, Ajani JA, et al. Drug resistance and cancer stem cells. Cell Commun Signal. 2021;19(1):19. doi:10.1186/s12964-020-00627-5
  • Liu F, Qian Y. The role of CD133 in hepatocellular carcinoma. Cancer Biol Ther. 2021;22(4):291–300. doi:10.1080/15384047.2021.1916381
  • Alibolandi M, Abnous K, Anvari S, et al. CD133-targeted delivery of self-assembled PEGylated carboxymethylcellulose-SN38 nanoparticles to colorectal cancer. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1159–1169. doi:10.1080/21691401.2018.1446969
  • Pillai K, Pourgholami MH, Chua TC, et al. MUC1 as a potential target in anticancer therapies. Am J Clin Oncol. 2015;38(1):108–118. doi:10.1097/COC.0b013e31828f5a07
  • Kesari MV, Gaopande VL, Joshi AR, et al. Immunohistochemical study of MUC1, MUC2 and MUC5AC in colorectal carcinoma and review of literature. Indian J Gastroenterol. 2015;34(1):63–67. doi:10.1007/s12664-015-0534-y
  • Sayari E, Dinarvand M, Amini M, et al. MUC1 aptamer conjugated to chitosan nanoparticles, an efficient targeted carrier designed for anticancer SN38 delivery. Int J Pharm. 2014;473(1–2):304–315. doi:10.1016/j.ijpharm.2014.05.041
  • Cao S, Chen Y, Ren Y, et al. GLUT1 biological function and inhibition: research advances. Future Med Chem. 2021;13(14):1227–1243. doi:10.4155/fmc-2021-0071
  • Ding N, Xu S, Zheng S, et al. ”Sweet tooth”-oriented SN38 prodrug delivery nanoplatform for targeted gastric cancer therapy. J Mater Chem B. 2021;9(12):2816–2830. doi:10.1039/D0TB02787A
  • Yang C, Xia AJ, Du CH, et al. Discovery of highly potent and selective 7-ethyl-10-hydroxycamptothecin-glucose conjugates as potential anti-colorectal cancer agents. Front Pharmacol. 2022;13:1014854. doi:10.3389/fphar.2022.1014854
  • Khan ZA, Caurtero J, Barbin YP, et al. ED-B fibronectin in non-small cell lung carcinoma. Exp Lung Res. 2005;31(7):701–711. doi:10.1080/01902140591007236
  • Kim H, Lee Y, Kang S, et al. Self-assembled nanoparticles comprising aptide-SN38 conjugates for use in targeted cancer therapy. Nanotechnology. 2016;27(48):48lt01. doi:10.1088/0957-4484/27/48/48LT01
  • Hafeez U, Parakh S, Gan HK, et al. Antibody-drug conjugates for cancer therapy. Molecules. 2020;25(20):4764. doi:10.3390/molecules25204764
  • Talukdar A, Kundu B, Sarkar D, et al. Topoisomerase I inhibitors: challenges, progress and the road ahead. Eur J Med Chem. 2022;236:114304. doi:10.1016/j.ejmech.2022.114304
  • Liu L, Xie F, Xiao D, et al. Synthesis and evaluation of highly releasable and structurally stable antibody-SN-38-conjugates. Drug Deliv. 2021;28(1):2603–2617. doi:10.1080/10717544.2021.2008053
  • Spring LM, Nakajima E, Hutchinson J, et al. Sacituzumab govitecan for metastatic triple-negative breast cancer: clinical overview and management of potential toxicities. The Oncologist. 2021;26(10):827–834. doi:10.1002/onco.13878
  • Bardia A, Mayer IA, Vahdat LT, et al. Sacituzumab Govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380(8):741–751. doi:10.1056/NEJMoa1814213
  • Bardia A, Hurvitz SA, Tolaney SM, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384(16):1529–1541. doi:10.1056/NEJMoa2028485
  • Rugo HS, Bardia A, Marmé F, et al. Sacituzumab Govitecan in hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2022;40(29):3365–3376. doi:10.1200/JCO.22.01002
  • Kalinsky K, Diamond JR, Vahdat LT, et al. Sacituzumab govitecan in previously treated hormone receptor-positive/HER2-negative metastatic breast cancer: final results from a phase I/II, single-arm, basket trial. Ann Oncol. 2020;31(12):1709–1718. doi:10.1016/j.annonc.2020.09.004
  • Tagawa ST, Balar AV, Petrylak DP, et al. TROPHY-U-01: a Phase II open-label study of Sacituzumab Govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors. J Clin Oncol. 2021;39(22):2474–2485. doi:10.1200/JCO.20.03489
  • Heist RS, Guarino MJ, Masters G, et al. Therapy of advanced non-small-cell lung cancer with an SN-38-anti-trop-2 drug conjugate, sacituzumab govitecan. J Clin Oncol. 2017;35(24):2790–2797. doi:10.1200/JCO.2016.72.1894
  • Gray JE, Heist RS, Starodub AN, et al. Therapy of Small Cell Lung Cancer (SCLC) with a Topoisomerase-I-inhibiting Antibody-Drug Conjugate (ADC) targeting trop-2, sacituzumab govitecan. Clin Cancer Res. 2017;23(19):5711–5719. doi:10.1158/1078-0432.CCR-17-0933
  • Syed YY. Sacituzumab govitecan: first approval. Drugs. 2020;80(10):1019–1025. doi:10.1007/s40265-020-01337-5
  • Dotan E, Cohen SJ, Starodub AN, et al. Phase I/II trial of labetuzumab govitecan (Anti-CEACAM5/SN-38 Antibody-Drug Conjugate) in patients with refractory or relapsing metastatic colorectal cancer. J Clin Oncol. 2017;35(29):3338–3346. doi:10.1200/JCO.2017.73.9011
  • Cardillo TM, Govindan SV, Zalath MB, et al. IMMU-140, a novel SN-38 antibody-drug conjugate targeting HLA-DR, mediates dual cytotoxic effects in hematologic cancers and malignant melanoma. Mol Cancer Ther. 2018;17(1):150–160. doi:10.1158/1535-7163.MCT-17-0354
  • Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023;22(2):101–126. doi:10.1038/s41573-022-00579-0
  • Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–792. doi:10.1056/NEJM200103153441101
  • Yao Y, Yu L, Su X, et al. Synthesis, characterization and targeting chemotherapy for ovarian cancer of trastuzumab-SN-38 conjugates. J Control Release. 2015;220(Pt A):5–17. doi:10.1016/j.jconrel.2015.09.058
  • Kobzev D, Prasad C, Walunj D, et al. Synthesis and biological evaluation of theranostic Trastuzumab-SN38 conjugate for Near-IR fluorescence imaging and targeted therapy of HER2+ breast cancer. Eur J Med Chem. 2023;252:115298. doi:10.1016/j.ejmech.2023.115298
  • Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221(107753):107753. doi:10.1016/j.pharmthera.2020.107753
  • Huang JY, Liang QF, Li JS, et al. Research progress on anti-tumor mechanisms of arsenic trioxide and its drug delivery system. Chin Traditional Herbal Drugs. 2020;51(23):6102–6111.
  • Gu M, Wang X, Toh TB, et al. Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discov Today. 2018;23(5):1043–1052. doi:10.1016/j.drudis.2017.11.009
  • Wang H, Shrestha TB, Basel MT, et al. Magnetic-Fe/Fe(3)O(4)-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages. Beilstein J Nanotechnol. 2012;3:444–455. doi:10.3762/bjnano.3.51
  • Liao J, Jia Y, Wu Y, et al. Physical-, chemical-, and biological-responsive nanomedicine for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(1):e1581. doi:10.1002/wnan.1581
  • Tsai MH, Peng CL, Yang SJ, et al. Photothermal, targeting, theranostic near-infrared nanoagent with SN38 against colorectal cancer for chemothermal therapy. Mol Pharm. 2017;14(8):2766–2780. doi:10.1021/acs.molpharmaceut.7b00315
  • Luo C, Sun J, Liu D, et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016;16(9):5401–5408. doi:10.1021/acs.nanolett.6b01632
  • Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813–827. doi:10.1038/nrd4333
  • Liu Y, Hyde AS, Simpson MA, et al. Emerging regulatory paradigms in glutathione metabolism. Adv Cancer Res. 2014;122:69–101.
  • Zheng Y, Yan X, Wang Y, et al. Hydrophobized SN38 to redox-hypersensitive nanorods for cancer therapy. J Mater Chem B. 2019;7(2):265–276. doi:10.1039/C8TB02319K
  • He W, Du Y, Wang T, et al. Redox responsive 7-ethyl-10-hydroxycamptothecin (SN38) lysophospholipid conjugate: synthesis, assembly and anticancer evaluation. Int J Pharm. 2021;606:120856. doi:10.1016/j.ijpharm.2021.120856
  • Zhong ZX, Li XZ, Liu JT, et al. Disulfide bond-based SN38 prodrug nanoassemblies with high drug loading and reduction-triggered drug release for pancreatic cancer therapy. Int J Nanomed. 2023;18:1281–1298. doi:10.2147/IJN.S404848
  • Hao T, Fu Y, Yang Y, et al. Tumor vasculature-targeting PEGylated peptide-drug conjugate prodrug nanoparticles improve chemotherapy and prevent tumor metastasis. Eur J Med Chem. 2021;219:113430. doi:10.1016/j.ejmech.2021.113430
  • Mauro N, Utzeri MA, Cillari R, et al. Cholesterol-inulin conjugates for efficient SN38 nuclear delivery: nanomedicines for precision cancer therapy. Cancers. 2022;14(19):4857. doi:10.3390/cancers14194857
  • Cheng K, Zhou J, Chen Y, et al. Progress of stimulation response strategy based on nanomaterials in tumor therapy. Cancer Res Prevent Treat. 2019;46(09):841–846.
  • Gong Y, Chen M, Tan Y, et al. Injectable reactive oxygen species-responsive SN38 prodrug scaffold with checkpoint inhibitors for combined chemoimmunotherapy. ACS Appl Mater Interfaces. 2020;12(45):50248–50259. doi:10.1021/acsami.0c13943
  • Zhang CY, Zhang CX, Wang HY, et al. Research progress of multi-stimulation responsive nanomaterials in drug delivery systems. Chin J New Drugs. 2013;22(20):2383–2387.
  • Lin C, Tong F, Liu R, et al. GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy. Acta Pharm Sin B. 2020;10(12):2348–2361. doi:10.1016/j.apsb.2020.10.009
  • Liu X, Huang Q, Yang C, et al. A multi-stimuli responsive nanoparticulate SN38 prodrug for cancer chemotherapy. J Mater Chem B. 2017;5(4):661–670. doi:10.1039/C6TB02262F
  • Chen J, Zhou L, Wang C, et al. A multifunctional SN38-conjugated nanosystem for defeating myelosuppression and diarrhea induced by irinotecan in esophageal cancer. Nanoscale. 2020;12(41):21234–21247. doi:10.1039/D0NR06266A
  • Hosseinzadeh H, Atyabi F, Varnamkhasti BS, et al. SN38 conjugated hyaluronic acid gold nanoparticles as a novel system against metastatic colon cancer cells. Int J Pharm. 2017;526(1–2):339–352. doi:10.1016/j.ijpharm.2017.04.060
  • Eftekhari RB, Maghsoudnia N, Samimi S, et al. Co-delivery nanosystems for cancer treatment: a review. Pharm Nanotechnol. 2019;7(2):90–112. doi:10.2174/2211738507666190321112237
  • Li Y, Thambi T, Lee DS. Co-delivery of drugs and genes using polymeric nanoparticles for synergistic cancer therapeutic effects. Adv Healthc Mater. 2018;7(1). doi:10.1002/adhm.201700886
  • Sun N, Zhao C, Cheng R, et al. Cargo-free nanomedicine with pH sensitivity for codelivery of DOX conjugated prodrug with SN38 to synergistically eradicate breast cancer stem cells. Mol Pharm. 2018;15(8):3343–3355. doi:10.1021/acs.molpharmaceut.8b00367
  • Jiang X, Lee M, Xia J, et al. Two-stage SN38 release from a core-shell nanoparticle enhances tumor deposition and antitumor efficacy for synergistic combination with immune checkpoint blockade. ACS Nano. 2022;16(12):21417–21430. doi:10.1021/acsnano.2c09788
  • Nagheh Z, Irani S, Mirfakhraie R, et al. SN38-PEG-PLGA-verapamil nanoparticles inhibit proliferation and downregulate drug transporter ABCG2 gene expression in colorectal cancer cells. Prog Biomater. 2017;6(4):137–145. doi:10.1007/s40204-017-0073-y
  • Mainini F, Eccles MR. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy. Molecules. 2020;25(11):2692. doi:10.3390/molecules25112692
  • Bi Y, Lee RJ, Wang X, et al. Liposomal codelivery of an SN38 prodrug and a survivin siRNA for tumor therapy. Int J Nanomed. 2018;13:5811–5822. doi:10.2147/IJN.S173279
  • Yuan X, Duan Y, Xiao Y, et al. Vitamin E enhances cancer immunotherapy by reinvigorating dendritic cells via targeting checkpoint SHP1. Cancer Discov. 2022;12(7):1742–1759. doi:10.1158/2159-8290.CD-21-0900
  • Huang X, Neckenig M, Sun J, et al. Vitamin E succinate exerts anti-tumour effects on human cervical cancer cells via the CD47-SIRPɑ pathway both in vivo and in vitro. J Cancer. 2021;12(13):3877–3886. doi:10.7150/jca.52315
  • Iyer R, Croucher JL, Chorny M, et al. Nanoparticle delivery of an SN38 conjugate is more effective than irinotecan in a mouse model of neuroblastoma. Cancer Lett. 2015;360(2):205–212. doi:10.1016/j.canlet.2015.02.011
  • Nguyen F, Alferiev I, Guan P, et al. Enhanced intratumoral delivery of SN38 as a tocopherol oxyacetate prodrug using nanoparticles in a neuroblastoma Xenograft model. Clin Cancer Res. 2018;24(11):2585–2593. doi:10.1158/1078-0432.CCR-17-3811
  • Qin SY, Zhang AQ, Zhang XZ. Recent advances in targeted tumor chemotherapy based on smart nanomedicines. Small. 2018;14(45):e1802417. doi:10.1002/smll.201802417
  • Park JW, Hong K, Kirpotin DB, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted. Clin Cancer Res. 2002;8(4):1172–1181.
  • Higaki M, Ishihara T, Izumo N, et al. Treatment of experimental arthritis with poly(D, L-lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate. Ann Rheum Dis. 2005;64(8):1132–1136. doi:10.1136/ard.2004.030759
  • Dolati S, Sadreddini S, Rostamzadeh D, et al. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed Pharmacother. 2016;80:30–41. doi:10.1016/j.biopha.2016.03.004
  • Sethi V, Rubinstein I, Kuzmis A, et al. Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol Pharm. 2013;10(2):728–738. doi:10.1021/mp300539f
  • Gong JN, Li FY, Pei ZR, et al. Design and application of nano drug delivery system for enhanced antitumor therapy based on tumor microenvironment. Chin Pharm J. 2022;57(20):1685–1696.
  • Lee H, Shields AF, Siegel BA, et al. (64)Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res. 2017;23(15):4190–4202.
  • Nezhadi S, Dorkoosh FA. Co-delivery systems: hope for clinical application? Drug Deliv Transl Res. 2022;12(6):1339–1354. doi:10.1007/s13346-021-01041-1
  • Sun Q, Zhou Z, Qiu N, et al. Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv Mater. 2017;29(14). doi:10.1002/adma.201606628