125
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Fe-Capsaicin Nanozymes Attenuate Sepsis-Induced Acute Lung Injury via NF-κB Signaling

, , , , , , & show all
Pages 73-90 | Received 21 Aug 2023, Accepted 17 Dec 2023, Published online: 26 Feb 2024

References

  • Hudson L, Steinberg K. Epidemiology of acute lung injury and ARDS. Chest. 1999;116:74S–82S. doi:10.1378/chest.116.suppl_1.74S-a
  • Navegantes-Lima K, Monteiro V, de França Gaspar S, et al. Agaricus brasiliensis mushroom protects against sepsis by alleviating oxidative and inflammatory response. Front Immunol. 2020;11:1238. doi:10.3389/fimmu.2020.01238
  • Rudd K, Johnson S, Agesa K, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global burden of disease study. Lancet. 2020;395(10219):200–211. doi:10.1016/S0140-6736(19)32989-7
  • Esposito S, De Simone G, Boccia G, De Caro F, Pagliano P. Sepsis and septic shock: new definitions, new diagnostic and therapeutic approaches. J Global Antimicrob Resist. 2017;10:204–212. doi:10.1016/j.jgar.2017.06.013
  • Singer M, Deutschman C, Seymour C, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi:10.1001/jama.2016.0287
  • Mayr F, Yende S, Angus D. Epidemiology of severe sepsis. Virulence. 2014;5(1):4–11. doi:10.4161/viru.27372
  • He Y, Zhou C, Yu L, et al. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res. 2021;163:105224. doi:10.1016/j.phrs.2020.105224
  • Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377(6):562–572. doi:10.1056/NEJMra1608077
  • Qiao Q, Liu X, Yang T, et al. Nanomedicine for acute respiratory distress syndrome: the latest application, targeting strategy, and rational design. Acta pharmaceutica Sinica B. 2021;11(10):3060–3091.
  • Hsieh Y, Deng J, Pan H, Liao J, Huang S, Huang G. Sclareol ameliorate lipopolysaccharide-induced acute lung injury through inhibition of MAPK and induction of HO-1 signaling. Int Immunopharmacol. 2017;44:16–25. doi:10.1016/j.intimp.2016.12.026
  • Kolomaznik M, Nova Z, Calkovska A. Pulmonary surfactant and bacterial lipopolysaccharide: the interaction and its functional consequences. Physiol Res. 2017;66:S147–S157.
  • Bae H, Li M, Kim J, et al. The effect of epigallocatechin gallate on lipopolysaccharide-induced acute lung injury in a murine model. Inflammation. 2010;33(2):82–91. doi:10.1007/s10753-009-9161-z
  • Kim C, Kawada T, Kim B, et al. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell. Signalling. 2003;15(3):299–306. doi:10.1016/S0898-6568(02)00086-4
  • Borghi S, Carvalho T, Staurengo-Ferrari L, et al. Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J Natural Prod. 2013;76(6):1141–1149. doi:10.1021/np400222v
  • Uhelski M, McAdams B, Johns M, Kabadi R, Simone D, Banik R. Lack of relationship between epidermal denervation by capsaicin and incisional pain behaviours: a laser scanning confocal microscopy study in rats. Europ J Pain. 2020;24(6):1197–1208. doi:10.1002/ejp.1564
  • Hughes S, Ward G, Strutton P. Anodal transcranial direct current stimulation over the primary motor cortex attenuates capsaicin-induced dynamic mechanical allodynia and mechanical pain sensitivity in humans. Europ J Pain. 2020;24(6):1130–1137. doi:10.1002/ejp.1557
  • Lu H, Chen Y, Yang J, et al. Antitumor activity of capsaicin on human colon cancer cells in vitro and colo 205 tumor xenografts in vivo. J Agricul Food Chem. 2010;58(24):12999–13005. doi:10.1021/jf103335w
  • Shen S, Li H, Chen K, et al. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-Sensitive cluster nanocarrier for cancer chemoimmunotherapy. Nano Lett. 2017;17(6):3822–3829. doi:10.1021/acs.nanolett.7b01193
  • Wang D, Wu H, Yang G, et al. Metal-organic framework derived multicomponent nanoagent as a reactive oxygen species amplifier for enhanced photodynamic therapy. ACS nano. 2020;14(10):13500–13511. doi:10.1021/acsnano.0c05499
  • Li C, Hang T, Jin Y. Atomically Fe-anchored MOF-on-MOF nanozyme with differential signal amplification for ultrasensitive cathodic electrochemiluminescence immunoassay. Exploration. 2023;3(4):20220151. doi:10.1002/EXP.20220151
  • Ren X, Chen D, Wang Y, et al. Nanozymes-recent development and biomedical applications. J Nanobiotechnol. 2022;20(1):92. doi:10.1186/s12951-022-01295-y
  • Zhu Z, Lu H, Jin L, et al. C-176 loaded Ce DNase nanoparticles synergistically inhibit the cGAS-STING pathway for ischemic stroke treatment. Bioact Mater. 2023;29:230–240. doi:10.1016/j.bioactmat.2023.07.002
  • Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–2200. doi:10.1021/acs.accounts.9b00140
  • Chen K, Chen P, Hsieh Y, Lin C, Lee Y, Chu S. Capsaicin protects endothelial cells and macrophage against oxidized low-density lipoprotein-induced injury by direct antioxidant action. Chem Biol Interact. 2015;228:35–45. doi:10.1016/j.cbi.2015.01.007
  • Lai K, Song C, Gao M, et al. Uridine alleviates sepsis-induced acute lung injury by inhibiting ferroptosis of macrophage. Int J Mol Sci. 2023;24(6):5093. doi:10.3390/ijms24065093
  • Carrascal M, Areny-Balaguero A, de-Madaria E, et al. Inflammatory capacity of exosomes released in the early stages of acute pancreatitis predicts the severity of the disease. J Pathol. 2022;256(1):83–92. doi:10.1002/path.5811
  • Matute-Bello G, Downey G, Moore B, et al. An official American thoracic society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725–738. doi:10.1165/rcmb.2009-0210ST
  • Druzak S, Iffrig E, Roberts B, et al. Multiplatform analyses reveal distinct drivers of systemic pathogenesis in adult versus pediatric severe acute COVID-19. Nat Commun. 2023;14(1):1638. doi:10.1038/s41467-023-37269-3
  • Wang W, Liu C. Sepsis heterogeneity. World J Pediat. 2023;19(10):919–927. doi:10.1007/s12519-023-00689-8
  • Huang K, Chiang Y, Huang T, et al. Capsaicin alleviates cisplatin-induced muscle loss and atrophy in vitro and in vivo. J Cachex Sarcop Musc. 2023;14(1):182–197. doi:10.1002/jcsm.13120
  • Rollyson W, Stover C, Brown K, et al. Bioavailability of capsaicin and its implications for drug delivery. J Controll Rele. 2014;196:96–105. doi:10.1016/j.jconrel.2014.09.027
  • Merritt J, Richbart S, Moles E, et al. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol Ther. 2022;238:108177. doi:10.1016/j.pharmthera.2022.108177
  • Mohammadi Z, Zhang F, Kharazmi M, Jafari S. Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures. Crit Rev Food Sci Nutr. 2022;2022:1–19.
  • Jin L, Cao F, Gao Y, et al. Microenvironment-activated nanozyme-armed bacteriophages efficiently combat bacterial infection. Advan Mater. 2023;35:30.
  • Li Y, Wang Y, Dong C, et al. Single-atom nickel terminating sp and sp nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting. Chem Sci. 2021;12(10):3633–3643. doi:10.1039/D0SC07093A
  • Sun T, Mitchell S, Li J, et al. Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions. Advan Mater. 2021;33(5):e2003075. doi:10.1002/adma.202003075
  • Xu B, Wang H, Wang W, et al. A single-atom nanozyme for wound disinfection applications. Angew Chem. 2019;58(15):4911–4916. doi:10.1002/anie.201813994
  • Cao F, Jin L, Gao Y, et al. Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nature Nanotechnol. 2023;18(6):617–627. doi:10.1038/s41565-023-01346-x
  • Yang Z, Guo J, Wang L, et al. Nanozyme-enhanced electrochemical biosensors: mechanisms and applications. Small;2023. e2307815. doi:10.1002/smll.202307815
  • Wang X, Shi Q, Zha Z, et al. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact Mater. 2021;6(12):4389–4401. doi:10.1016/j.bioactmat.2021.04.024
  • Zhang M, Xu W, Gao Y, Zhou N, Wang W. Manganese-iron dual single-atom catalyst with enhanced nanozyme activity for wound and pustule disinfection. ACS Appl Mater Interfaces. 2023;15(36):42227–42240. doi:10.1021/acsami.3c08018
  • Yuan R, Li Y, Han S, et al. Fe-curcumin nanozyme-mediated reactive oxygen species scavenging and anti-inflammation for acute lung injury. ACS Cent. Sci. 2022;8(1):10–21. doi:10.1021/acscentsci.1c00866
  • Shi C, Li Y, Gu N. Iron-based nanozymes in disease diagnosis and treatment. Chembiochem. 2020;21(19):2722–2732. doi:10.1002/cbic.202000094
  • Fang M, Zhong W, Song W, et al. Ulinastatin ameliorates pulmonary capillary endothelial permeability induced by sepsis through protection of tight junctions via inhibition of TNF-α and related pathways. Front Pharmacol. 2018;9:823. doi:10.3389/fphar.2018.00823
  • Wang R, Song W, Xie C, et al. Urinary trypsin inhibitor protects tight junctions of septic pulmonary capillary endothelial cells by regulating the functions of macrophages. J Inflamm Res. 2021;14:1973–1989. doi:10.2147/JIR.S303577
  • Zhang Q, Luo P, Xia F, et al. Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis. Cell Chem Biol. 2022;29(8):1248–1259.e1246. doi:10.1016/j.chembiol.2022.06.011
  • Zhang Q, Lenardo M, Baltimore D. 30 Years of NF-κB: a blossoming of relevance to human pathobiology. Cell. 2017;168:37–57. doi:10.1016/j.cell.2016.12.012
  • Tiruppathi C, Soni D, Wang D, et al. The transcription factor DREAM represses the deubiquitinase A20 and mediates inflammation. Nat Immunol. 2014;15(3):239–247. doi:10.1038/ni.2823
  • Wertz I, O’Rourke K, Zhou H, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004;430:7000):694–699. doi:10.1038/nature02794
  • Chen X, Wang S, Liu C, et al. Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-κB and MAPK signaling. Pharmacol Res. 2022;185:106473. doi:10.1016/j.phrs.2022.106473
  • Chousterman B, Swirski F, Weber G. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517–528. doi:10.1007/s00281-017-0639-8
  • Fajgenbaum D, June C. Cytokine Storm. N Engl J Med. 2020;383(23):2255–2273. doi:10.1056/NEJMra2026131