199
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

SiRNF8 Delivered by DNA Framework Nucleic Acid Effectively Sensitizes Chemotherapy in Colon Cancer

, , , , , , & ORCID Icon show all
Pages 171-188 | Received 30 Aug 2023, Accepted 23 Dec 2023, Published online: 05 Jan 2024

References

  • Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Inter J Can. 2021;149:778–789. doi:10.1002/ijc.33588
  • Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325:669–685. doi:10.1001/jama.2021.0106
  • Khan FAO, Albalawi R, Pottoo FH. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med Res Rev. 2022;42(1):227–258. doi:10.1002/med.21809
  • Li P, Zhang X, Wang H, et al. MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2. Mol Cancer Ther. 2017;16:739–751. doi:10.1158/1535-7163.MCT-16-0591
  • Zhu C, Zhang L, Zhao S, Dai W, Xu Y. UPF1 promotes chemoresistance to oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal cancer. Cell Death Dis. 2021;12(6):519. doi:10.1038/s41419-021-03798-2
  • Kalyanaraman B. Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: have we been barking up the wrong tree? Redox Biol. 2020;29:101394. doi:10.1016/j.redox.2019.101394
  • Renu K, V.g A, P.b TP, Arunachalam S. Molecular mechanism of doxorubicin-induced cardiomyopathy – an update. Eur J Pharmacol. 2018;818:241–253. doi:10.1016/j.ejphar.2017.10.043
  • Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021;139:111708. doi:10.1016/j.biopha.2021.111708
  • Alibolandi M, Abnous K, Mohammadi M, et al. Extensive preclinical investigation of polymersomal formulation of doxorubicin versus Doxil-mimic formulation. J Control Release. 2017;264:228–236. doi:10.1016/j.jconrel.2017.08.030
  • Russell LM, Hultz M, Searson PC. Leakage kinetics of the liposomal chemotherapeutic agent Doxil: the role of dissolution, protonation, and passive transport, and implications for mechanism of action. J Control Release. 2018;269:171–176. doi:10.1016/j.jconrel.2017.11.007
  • Hosseini NF, Amini R, Ramezani M, et al. AS1411 aptamer-functionalized exosomes in the targeted delivery of doxorubicin in fighting colorectal cancer. Biomed Pharmacother. 2022;155:113690. doi:10.1016/j.biopha.2022.113690
  • Christidi E, Brunham LA-O. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021;12(4):339. doi:10.1038/s41419-021-03614-x
  • Wu L, Wang L, Du Y, Zhang Y, Ren J. Mitochondrial quality control mechanisms as therapeutic targets in doxorubicin-induced cardiotoxicity. Trends Pharmacol Sci. 2023;44:34–49. doi:10.1016/j.tips.2022.10.003
  • Guo Z, Tian Y, Guo Y, et al. RAD6B plays a critical role in neuronal DNA damage response to resist neurodegeneration. Front Cell Neurosci. 2019;13:392. doi:10.3389/fncel.2019.00392
  • Guo Y, Song Y, Guo Z, et al. Function of RAD6B and RNF8 in spermatogenesis. Cell Cycle. 2018;17:162–173. doi:10.1080/15384101.2017.1361066
  • Zhou T, Yi F, Wang Z, et al. The Functions of DNA Damage Factor RNF8 in the pathogenesis and progression of cancer. Int J Bio Sci. 2019;15(5):909. doi:10.7150/ijbs.31972
  • Ouyang S, Song Y, Tian Y, et al. RNF8 deficiency results in neurodegeneration in mice. Neurobiol Aging. 2015;36:2850–2860. doi:10.1016/j.neurobiolaging.2015.07.010
  • Tracz MA-O, Bialek WA-O. Beyond K48 and K63: non-canonical protein ubiquitination. Cell Mol Biol Lett. 2021;26(1):1. doi:10.1186/s11658-020-00245-6
  • Martínez-Férriz A, Ferrando A, Fathinajafabadi A, Farràs R. Ubiquitin-mediated mechanisms of translational control. Semin Cell Dev Biol. 2022;132:146–154. doi:10.1016/j.semcdb.2021.12.009
  • Kolla S, Ye M, Mark KG, Rapé M. Assembly and function of branched ubiquitin chains. Trends Biochem Sci. 2022;2022:1.
  • Cao L, Liu X, Zheng B, Xing CA-OX, Liu JA-O. Role of K63-linked ubiquitination in cancer. Cell Death Discovery. 2022;8(1):410. doi:10.1038/s41420-022-01204-0
  • Li L, Halaby M-J, Hakem A, et al. Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. J Exp Med. 2010;207(5):983–997. doi:10.1084/jem.20092437
  • Ren L, Zhou T, Wang Y, et al. RNF8 induces β-catenin-mediated c-Myc expression and promotes colon cancer proliferation. Int J Bio Sci. 2020;16(12):2051. doi:10.7150/ijbs.44119
  • Kuang J, Min L, Liu C, Chen S, Zhu L. RNF8 promotes epithelial-mesenchymal transition in lung cancer cells via stabilization of slug. Mol Cancer Res. 2020;1211:2019.
  • Kuang J, Li L, Guo L, et al. RNF8 promotes epithelial-mesenchymal transition of breast cancer cells. J Exp Clin Cancer Res. 2016;35(1):1–4. doi:10.1186/s13046-016-0363-6
  • Zhou T, Wang S, Song X, et al. RNF8 up-regulates AR/ARV7 action to contribute to advanced prostate cancer progression. Cell Death Dis. 2022;13(4):352. doi:10.1038/s41419-022-04787-9
  • Xu Y, Hu Y, Xu T, et al. RNF8-mediated regulation of Akt promotes lung cancer cell survival and resistance to DNA damage. Cell Rep. 2021;37:109854. doi:10.1016/j.celrep.2021.109854
  • Lee HJ, Li C-F, Ruan D, et al. The DNA damage transducer RNF8 facilitates cancer chemoresistance and progression through twist activation. Molecular Cell. 2016;63(6):1021–1033. doi:10.1016/j.molcel.2016.08.009
  • Gogoi P, Kaur G, Singh NK. Nanotechnology for colorectal cancer detection and treatment. World J Gastroenterol. 2022;28(46):6497. doi:10.3748/wjg.v28.i46.6497
  • Kasi PB, Mallela VR, Ambrozkiewicz F, et al. Theranostics nanomedicine applications for colorectal cancer and metastasis: recent advances. Int J Mol Sci. 2023;24(9):7922. doi:10.3390/ijms24097922
  • Haggag Y, Elshikh M, El-Tanani M, et al. Nanoencapsulation of sophorolipids in PEGylated poly(lactide-co-glycolide) as a novel approach to target colon carcinoma in the murine model. Drug Delivery Transl Res. 2020;10:1353–1366. doi:10.1007/s13346-020-00750-3
  • Ibrahim B, Mady OY, Tambuwala MM, Haggag YA. pH-sensitive nanoparticles containing 5-fluorouracil and leucovorin as an improved anti-cancer option for colon cancer. Nanomedicine. 2022;17:367–381. doi:10.2217/nnm-2021-0423
  • Pavitra E, Dariya B, Srivani G, et al. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semi Cancer Biol. 2021;69:293–306. doi:10.1016/j.semcancer.2019.06.017
  • Younis NK, Roumieh R, Bassil EP, et al. Nanoparticles: attractive tools to treat colorectal cancer. Semi Cancer Biol. 2022;86:1–13. doi:10.1016/j.semcancer.2022.08.006
  • Naeimi R, Najafi R, Molaei P, Amini R, Pecic S. Nanoparticles: the future of effective diagnosis and treatment of colorectal cancer? Eur J Pharmacol. 2022;936:175350. doi:10.1016/j.ejphar.2022.175350
  • Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440(7082):297–302. doi:10.1038/nature04586
  • Udomprasert A, Kangsamaksin TA-O. DNA origami applications in cancer therapy. Cancer Sci. 2017;108(8):1535–1543. doi:10.1111/cas.13290
  • Hong F, Zhang F, Liu Y, Yan HA-O. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 2017;117(20):12584–12640. doi:10.1021/acs.chemrev.6b00825
  • Zeng Y, Nixon RL, Liu W, Wang R. The applications of functionalized DNA nanostructures in bioimaging and cancer therapy. Biomaterials. 2021;268:120560. doi:10.1016/j.biomaterials.2020.120560
  • Ji JA-O, Karna DA-O, Mao HA-O. DNA origami nano-mechanics. Chem Soc Rev. 2021;50(21):11966–11978. doi:10.1039/D1CS00250C
  • Jiang Q, Liu S, Liu J, Wang ZG, Ding BA-O. Rationally designed DNA-origami nanomaterials for drug delivery in vivo. Adv Mater. 2019;31(45):1804785. doi:10.1002/adma.201804785
  • Wiraja C, Zhu Y, Lio DCS, et al. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat Commun. 2019;10(1):1147. doi:10.1038/s41467-019-09029-9
  • Ouyang X, Wu Y, Guo L, et al. Self-assembly induced enhanced electrochemiluminescence of copper nanoclusters using DNA nanoribbon templates. Angew Chem Int. 2023;62(21):e202300893. doi:10.1002/anie.202300893
  • Ouyang XA-O, Wang S-Y, Liu T, et al. Functional modulation of cytochrome C upon specific binding to DNA nanoribbons. Chem. Commun. 2019;55(93):14074–14077. doi:10.1039/C9CC05427H
  • Linko V, Ora A, Kostiainen MA. DNA nanostructures as smart drug-delivery vehicles and molecular devices. Trends Biotechnol. 2015;33:586–594. doi:10.1016/j.tibtech.2015.08.001
  • Jorge AF, Aviñó A, Pais AA, Eritja R, Fàbrega C. Fàbrega C DNA-based nanoscaffolds as vehicles for 5-fluoro-2’-deoxyuridine oligomers in colorectal cancer therapy. Nanoscale. 2018;10(15):7238–7249. doi:10.1039/C7NR08442K
  • Wang Z, Song L, Liu Q, et al. A tubular DNA Nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew Chem. 2021;133(5):2626–2630. doi:10.1002/ange.202009842
  • Xu T, Yu S, Sun Y, et al. DNA origami frameworks enabled self-protective siRNA delivery for dual enhancement of chemo-photothermal combination therapy. Small. 2021;17(46):2101780. doi:10.1002/smll.202101780
  • Pan QA-O, Nie C, Hu Y, et al. Aptamer-functionalized DNA origami for targeted codelivery of antisense oligonucleotides and doxorubicin to enhance therapy in drug-resistant cancer cells. ACS Appl Mater Interfaces. 2019;12(1):400–409. doi:10.1021/acsami.9b20707
  • Liu J, Song L, Liu S, et al. A Tailored DNA nanoplatform for synergistic RNAi-/chemotherapy of multidrug-resistant tumors. Angew Chem Int. 2018;57:15486–15490. doi:10.1002/anie.201809452
  • Xiao D, Li Y, Tian T, et al. Tetrahedral framework nucleic acids loaded with aptamer AS1411 for siRNA delivery and gene silencing in malignant melanoma. ACS Appl Mater Interfaces. 2021;13:6109–6118. doi:10.1021/acsami.0c23005
  • Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–658. doi:10.1016/j.neo.2017.05.002
  • Chandrashekar DS, Karthikeyan SK, Korla PK, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27. doi:10.1016/j.neo.2022.01.001
  • Ghosh S, Singh R, Vanwinkle ZM, et al. Microbial metabolite restricts 5-fluorouracil-resistant colonic tumor progression by sensitizing drug transporters via regulation of FOXO3-FOXM1 axis. Theranostics. 2022;12(12):5574. doi:10.7150/thno.70754
  • Wang H, Yang W, Qin Q, et al. E3 ubiquitin ligase MAGI3 degrades c-Myc and acts as a predictor for chemotherapy response in colorectal cancer. Mol Cancer. 2022;21(1):1–9. doi:10.1186/s12943-022-01622-9
  • Zeng Y, Liu J, Yang S, et al. Time-lapse live cell imaging to monitor doxorubicin release from DNA origami nanostructures. J Mat Chem B. 2018;6(11):1605–1612. doi:10.1039/C7TB03223D
  • Li M, Yang G, Zheng Y, et al. NIR/pH-triggered aptamer-functionalized DNA origami nanovehicle for imaging-guided chemo-phototherapy. J Nanobiotechnol. 2023;21(1):186. doi:10.1186/s12951-023-01953-9
  • Zhang H, Wei X, Liu L, Zhang Q, Jiang W. The role of positively charged sites in the interaction between model cell membranes and γ-Fe(2)O(3) NPs. Sci Total Environ. 2019;673:414–423. doi:10.1016/j.scitotenv.2019.04.074
  • Xie S, Sun W, Fu T, et al. Aptamer-based targeted delivery of functional nucleic acids. J Am Chem Soc. 2023;145:7677–7691. doi:10.1021/jacs.3c00841
  • Fao S, Zeeshan M, Laraib U, et al. DNA based and stimuli-responsive smart nanocarrier for diagnosis and treatment of cancer: applications and challenges. Cancers. 2021;13(14):3396. doi:10.3390/cancers13143396.
  • Huen MS, Grant R, Manke I, et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell. 2007;131(5):901–914. doi:10.1016/j.cell.2007.09.041
  • Deshar R, Yoo W, Cho EB, Kim S, Yoon JB. RNF8 mediates NONO degradation following UV-induced DNA damage to properly terminate ATR-CHK1 checkpoint signaling. Nucleic Acids Res. 2019;47(2):762–778. doi:10.1093/nar/gky1166
  • Sun J, Zhu Z, Li W, et al. UBE2T-regulated H2AX monoubiquitination induces hepatocellular carcinoma radioresistance by facilitating CHK1 activation. J Exp Clin Cancer Res. 2020;39(1):1–8. doi:10.1186/s13046-020-01734-4
  • Geißler DA-O, Wegmann M, Jochum T, et al. An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots. Nanoscale. 2019;11(28):13458–13468. doi:10.1039/C9NR01021A
  • Zhang B, Li F, Shen L, et al. A cathodic photoelectrochemical immunoassay with dual signal amplification for the ultrasensitive detection of DNA damage biomarkers. Biosens Bioelectron. 2023;224:115052. doi:10.1016/j.bios.2022.115052
  • Li F, Liu B, Zhou X, Xu Q. Silencing of E3 ubiquitin ligase RNF8 enhances ionizing radiation sensitivity of medulloblastoma cells by promoting the deubiquitination of PCNA. Oncology Res. 2018;26(9):1365. doi:10.3727/096504018X15154085345907
  • Deng S, Yan T, Jendrny C, et al. Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer. 2014;14:1. doi:10.1186/1471-2407-14-842
  • Marin JA-O, Monte MJ, Macias RI, et al. Expression of chemoresistance-associated ABC proteins in hepatobiliary, pancreatic and gastrointestinal cancers. Cancers. 2022;14(14):3524.
  • Low FG, Shabir KAO, Brown JE, Rao. B, Rothnie AJ. Roles of ABCC1 and ABCC4 in proliferation and migration of breast cancer cell lines. Int J Mol Sci. 2020;21(20):7664. doi:10.3390/ijms21207664
  • Ramos A, Sadeghi S, Tabatabaeian HAO. Battling chemoresistance in cancer: root causes and strategies to uproot them. Int J Mol Sci. 2021;22(17):9451. doi:10.3390/ijms22179451
  • Gao Q, Li -X-X, Xu Y-M, et al. IRE1α-targeting downregulates ABC transporters and overcomes drug resistance of colon cancer cells. Cancer Lett. 2020;476:67–74. doi:10.1016/j.canlet.2020.02.007