186
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Anticipation and Verification of Dendrobium-Derived Nanovesicles for Skin Wound Healing Targets, Predicated Upon Immune Infiltration and Senescence

, , , , , , , & ORCID Icon show all
Pages 1629-1644 | Received 13 Oct 2023, Accepted 03 Feb 2024, Published online: 19 Feb 2024

References

  • Zhiheng H, Ong CH, Jaroslava H, Andrew B. Progranulin is a mediator of the wound response. Nature Med. 2003;9(2):225–229.
  • Garraud O, Hozzein WN, Badr G. Wound healing: time to look for intelligent, “natural” immunological approaches? BMC Immunol. 2017;18(Suppl 1):1–8.
  • Kamila R, Yevgeniy K, Zharylkasyn Z, Kuat K, Shiro J, Arman S. Immunology of acute and chronic wound healing. Biomolecules. 2021;11(5):700.
  • Graves N, Phillips CJ, Harding K. A narrative review of the epidemiology and economics of chronic wounds. Br j dermatol. 2021;187(2):141–148.
  • Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706.
  • Yağız S, Kaan KO, Turhan BB, et al. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. Food Funct. 2021;12:5144–5156.
  • Science; Researchers at Hangzhou Normal University Release New Data on Science. A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb. Sci Letter. 2017;6(1):18864.
  • Hanxiao T, Tianwen Z, Yunjie S, Ting Z, Lingzhu F, Yongsheng Z. Dendrobium officinale Kimura et Migo: a review on its ethnopharmacology, phytochemistry, pharmacology, and industrialization. Evid Based Complement Alternat Med. 2017. doi:10.1155/2017/7436259
  • Zhicai W, Meili Z, Hongqiu C, Jian L, Meina W. Transcriptomic landscape of medicinal dendrobium reveals genes associated with the biosynthesis of bioactive components. Front Plant Sci. 2020;11:391.
  • Hu WY. Traditional uses, chemical constituents, pharmacological activities, and toxicological effects of Dendrobium leaves: a review. J Ethnopharmacol. 2021;270:113851.
  • Aleksandra B, Magdalena N, Magdalena D, Szlachetko DL. Micromorphology of Labellum in selected Dendrobium Sw. (Orchidaceae, Dendrobieae). Int J Mol Sci. 2022;23(17):9578.
  • Zuo S-M, Yu H-D, Zhang W, et al. Comparative metabolomic analysis of dendrobium officinale under different cultivation substrates. Metabolites. 2020;10(8):325. doi:10.3390/metabo10080325
  • Wei L, Xingrui M, Xingqian W, et al.; Dendrobium nobile Lindl. Polysaccharides protect fibroblasts against UVA-induced photoaging via JNK/c-Jun/MMPs pathway. J Ethnopharmacol. 2022;298:115590.
  • Sooyeon H, EunYoung K, SeoEun L, JaeHyun K, Youngjoo S, HyukSang J. Dendrobium nobile Lindley administration attenuates atopic dermatitis-like lesions by modulating immune cells. Int J Mol Sci. 2022;23(8):9578.
  • Yin XB, Qu CH, Dong XX, Shen MR, Ni J. 《中国药典》2020年版一部收录中成药制法规律分析 [Preparation regularity of Chinese patent medicine in Chinese Pharmacopoeia (2020 edition, Vol. I)]. Zhongguo Zhong yao za zhi. 2022;47(16):4529–4535. Chinese.
  • Jian C, Hui Q, Jin-Biao L, et al. 铁皮石斛多糖促进毛发生长的实验研究 [Experimental study on Dendrobium candidum polysaccharides on promotion of hair growth]. Zhongguo Zhong yao za zhi. 2014;39(2):291–295. Chinese.
  • Xin Z, Peng S, Yu Q, Huayi SD. candidum has in vitro anticancer effects in HCT-116 cancer cells and exerts in vivo anti-metastatic effects in mice. Nutr Res Pract. 2014;8(5):487–493.
  • Teixeira da Silva JA, Tsavkelova EA, Zeng S, et al. Symbiotic in vitro seed propagation of Dendrobium: fungal and bacterial partners and their influence on plant growth and development. Planta. 2015;242(1):1–22.
  • Mengmeng W, Erwei Z, Chenrui Y, et al. Dendrobium officinale enzyme changing the structure and behaviors of Chitosan/γ-poly(glutamic acid. Hydrogel Potent Skin Care Polymers. 2022;14(10):2070.
  • Anesh P, Jay JW, Daniel J, Wolf SE, El Amina A. Role of exosomes in dermal wound healing: a systematic review. J invest dermatol. 2021;142(3PA):662–678.
  • Mengdie L, Tao W, He T, Guohua W, Liang Z, Yijie S. Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artif Cells Nanomed Biotechnol. 2019;47(1):3793–3803.
  • Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine. 2016;8(C):72–82. doi:10.1016/j.ebiom.2016.04.030
  • Shi Z, Wang Q, Jiang D. Extracellular vesicles from bone marrow-derived multipotent mesenchymal stromal cells regulate inflammation and enhance tendon healing. J Transl Med. 2019;17(1). doi:10.1186/s12967-019-1960-x
  • Juan X, Suwen B, Yadi C, et al. miRNA-221-3p in endothelial progenitor cell-derived exosomes accelerates skin wound healing in diabetic mice. Diabetes Metabol Syndr Obes. 2020;13:1259–1270.
  • Jieyuan Z, Chunyuan C, Bin H, et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling. Int J Bio Sci. 2016;12(12):1472.
  • Bin Z, Xiaodong L, Xiaomin S, et al. Exosomal MicroRNAs derived from human amniotic epithelial cells accelerate wound healing by promoting the proliferation and migration of fibroblasts. Stem Cells Int. 2018;2018:2018.
  • Tao M, Bingchuan F, Xin Y, Yilei X, Mengxiong P, Tao M. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. J Cell Biochem. 2019;120(6):19496–19508. doi:10.1002/jcb.29253
  • XueHan X, TieJun Y, Anwar DH, et al. Plant exosomes as novel nanoplatforms for MicroRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo. Nano Lett. 2021.8151–8159.
  • Qilong W, Xiaoying Z, Jingyao M, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 2013;4(1):1867.
  • Peng L-H, Wang M-Z, Chu Y, et al. Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-TRAIL–programmed therapy against melanoma. Sci Adv. 2020;6(27). doi:10.1126/sciadv.aba2735
  • Song Y, Shuyan L, Limei R, et al. Ginseng-derived nanoparticles induce skin cell proliferation and promote wound healing. J Ginseng Res. 2023;47(1):1867.
  • Fikrettin Ş, Polen K, Yıldırım GM, Irem Ö, Ezgi Y, Yağmur KE. In vitro wound healing activity of wheat-derived nanovesicles. Appl Biochem Biotechnol. 2018;188(2):381–394.
  • Manho K, Hyun PJ. Isolation of aloe saponaria-derived extracellular vesicles and investigation of their potential for chronic wound healing. Pharmaceutics. 2022;14(9):1905.
  • Shilo S, Roth S, Amzel T, et al. Cutaneous wound healing after treatment with plant-derived human recombinant collagen flowable gel. Tissue Eng Part A. 2013;19(13–14):1519–1526. doi:10.1089/ten.TEA.2012.0345
  • Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450–462. doi:10.1016/j.immuni.2016.02.015
  • Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and ‘Garb-aging. Trends Endocrinol Metab. 2016;28(3):199–212.
  • Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020;12(8):735. doi:10.3390/pharmaceutics12080735
  • Ellis S, Lin EJ, Tartar D. Immunology of wound healing. Curr Dermatol Rep. 2018;7(4):350–358.
  • Kun W, Yuwen L, Tiantian Z, et al. Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute liver failure. Stem Cell Res Ther. 2017;8(1):1.
  • Saul D, Kosinsky RL, Atkinson EJ, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022;13(1):4827.
  • Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13. doi:10.1017/S1462399411001943
  • Shukla SK, Sharma AK, Gupta V, Yashavarddhan MH. Pharmacological control of inflammation in wound healing. J Tissue Viabil. 2019;28(4):218–222. doi:10.1016/j.jtv.2019.09.002
  • Nowak NC, Menichella DM, Miller R, Paller AS. Cutaneous innervation in impaired diabetic wound healing. Transl Res. 2021;236:87–108.
  • Xu LN, Dongqing L, Mona S. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73(20):3861–3885.
  • Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in chronic wounds. Int J Mol Sci. 2016;17(12):2085.
  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic‐Canic M. Growth factors and cytokines in wound healing. Wound Repair Regener. 2008;16(5):585–601.
  • Burton DG, Faragher RG. Cellular senescence: from growth arrest to immunogenic conversion. Age. 2015;37(2):1–9.
  • Carlos AJ, Ana B, Torsten W, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15(8):978–990.
  • Adi S, Valery K. Immunosurveillance of senescent cells: the bright side of the senescence program. Biogerontology. 2013;14(6):617–628.
  • Dan Y, Yue X, Yuxun S, et al. Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model. J Pineal Res. 2022;73(4):e12828.
  • Sarhan J, Liu BC, Muendlein HI, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci USA. 2018;115(46):E10888–E10897.
  • Nagakannan P, ThirumalaDevi K. PANoptosis: a unique innate immune inflammatory cell death modality. J Iimmunol. 2022;209(9):1625–1633.
  • Okizaki S-I, Ito Y, Hosono K, et al. Vascular endothelial growth factor receptor type 1 signaling prevents delayed wound healing in diabetes by attenuating the production of IL-1β by Recruited macrophages. Am J Pathol. 2016;186(6):1481–1498. doi:10.1016/j.ajpath.2016.02.014
  • Nanako K, Rei N, Kanae S, et al. Interleukin-1β promotes interleulin-6 expression via ERK1/2 signaling pathway in canine dermal fibroblasts. PLoS One. 2019;14(7):e0220262.
  • Malak A, Laurence J, Cyril A, et al. Endothelial microparticles from acute coronary syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the Ang II/AT1 Receptor/NADPH oxidase-mediated activation of MAPKs and PI3-Kinase pathways. Circulation. 2017;135(3):280–296.
  • Delphine G, Estela B, Christine T, et al. NET formation in bullous pemphigoid patients with relapse is modulated by IL-17 and IL-23 interplay. Front Immunol. 2019;10:701.
  • Liang Z, Manli L, Wenhua L, et al. Th17/IL-17 induces endothelial cell senescence via activation of NF-κB/p53/Rb signaling pathway. Lab Invest. 2021;101(11):1418–1426.
  • Paloma S, Elisabetta M, Júlia B, et al. Targeting lymphoid-derived IL-17 signaling to delay skin aging. Nature Aging. 2023;3(6):1–7.
  • Yin L, Hu Y, Xu J, Guo J, Tu J, Yin Z. Ultraviolet B Inhibits IL-17A/TNF-α-stimulated activation of human dermal fibroblasts by decreasing the expression of IL-17RA and IL-17RC on fibroblasts. Front Immunol. 2017;8:91.
  • Mistry P, Carmona-Rivera C, Ombrello AK, et al. Dysregulated neutrophil responses and neutrophil extracellular trap formation and degradation in PAPA syndrome. Ann Rheumatic Dis. 2018;77(12):1825–1833.
  • Pedersen F, Waschki B, Marwitz S, et al. Neutrophil extracellular trap formation is regulated by CXCR2 in COPD neutrophils. Europ resp J. 2018;51(4):1700970. doi:10.1183/13993003.00970-2017
  • Ménoret A, Buturla JA, Xu MM, et al. T cell-directed IL-17 production by lung granular γδ T cells is coordinated by a novel IL-2 and IL-1β circuit. Mucosal Immunol. 2018;11(5):1398–1407. doi:10.1038/s41385-018-0037-0
  • Kamran G, Anna B, Charlotta E, Robert S. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet. 2021;397(10275):754–766.
  • Monteleone NJ, Lutz CS, Fioravanti A. miR-708 negatively regulates TNFα/IL-1β signaling by suppressing NF-κB and arachidonic acid pathways. Mediat Inflammat. 2021;2021:5595520. doi:10.1155/2021/5595520
  • Cai Y, Xue F, Quan C, et al. A critical role of the IL-1β-IL-1R signaling pathway in skin inflammation and psoriasis pathogenesis. J Invest Dermatol. 2018;139(1):146–156. doi:10.1016/j.jid.2018.07.025
  • Gendrisch F, Esser PR, Schempp CM, Wölfle U. Luteolin as a modulator of skin aging and inflammation. Bio Factors. 2020;47(2):170–180.
  • Shuainan Z, Ying Y, Yun R, et al. The emerging roles of neutrophil extracellular traps in wound healing. Cell Death Dis. 2021;12(11):984.