117
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Application of Three-Dimension Printing Nano-Carbonated-Hydroxylapatite to the Repair of Defects in Rabbit Bone

, , , , , , & show all
Pages 1667-1681 | Received 15 Oct 2023, Accepted 13 Feb 2024, Published online: 20 Feb 2024

References

  • Reichert JC, Saifzadeh S, Wullschleger ME, et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials. 2009;30(12):2149–2163. doi:10.1016/j.biomaterials.2008.12.050
  • Wang W, Yeung K. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2(4):224–247. doi:10.1016/j.bioactmat.2017.05.007
  • Van der Stok J, Van Lieshout EM, El-Massoudi Y, Van Kralingen GH, Patka P. Bone substitutes in the Netherlands–a systematic literature review. Acta Biomater. 2011;7(2):739–750. doi:10.1016/j.actbio.2010.07.035
  • Bauer TW, Muschler GF. Bone graft materials: an overview of the basic science. Clin Orthopaedics Related Res. 2000;371:37110–37127.
  • Fernandez-Yague MA, Abbah SA, McNamara L, Zeugolis DI, Pandit A, Biggs MJ. Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv Drug Delivery Rev. 2015;84:1–29.
  • Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury. 2011;42:42S16–42S21.
  • Khan SN, Cammisa FP, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77–86. doi:10.5435/00124635-200501000-00010
  • Finkemeier CG. Bone-grafting and bone-graft substitutes. JBJS. 2002;84(3):454–464. doi:10.2106/00004623-200203000-00020
  • Lee EJ, Kasper FK, Mikos AG. Biomaterials for tissue engineering. Ann Biomed Eng. 2014;42(2):323–337. doi:10.1007/s10439-013-0859-6
  • Asselmeier MA, Caspari RB, Bottenfield S. A review of allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus. Am j Sports Med. 1993;21(2):170–175. doi:10.1177/036354659302100202
  • Archunan MW, Petronis S. Bone grafts in trauma and orthopaedics. Cureus. 2021;13(9).
  • Barradas A, Yuan H, van Blitterswijk CA, Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater. 2011;21(407):29. doi:10.22203/eCM.v021a31
  • Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037–8045. doi:10.1016/j.actbio.2013.06.014
  • Klinge B, Alberius P, Isaksson S, Jönsson J. Osseous response to implanted natural bone mineral and synthetic hydroxylapatite ceramic in the repair of experimental skull bone defects. J Oral Maxillofacial Surg. 1992;50(3):241–249. doi:10.1016/0278-2391(92)90320-Y
  • Jarcho M, Kay JF, Gumaer KI, Doremus RH, Drobeck HP. Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface. J Bioeng. 1977;1(2):79–92.
  • Heimann RB. Functional plasma-sprayed hydroxylapatite coatings for medical application: clinical performance requirements and key property enhancement. J Vac Sci Technol A. 2021;39(5):050801. doi:10.1116/6.0001132
  • Eggli P, Müller W, Schenk R. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthopaedics Related Res. 1988;232:127–138.
  • Cahyanto A, Maruta M, Tsuru K, Matsuya S, Ishikawa K. Fabrication of bone cement that fully transforms to carbonate apatite. Dent Mater J. 2015;34(3):2014–2328.
  • Amna T. Valorization of bone waste of Saudi Arabia by synthesizing hydroxyapatite. Appl Biochem Biotechnol. 2018;186(3):779–788. doi:10.1007/s12010-018-2768-5
  • Rahyussalim AJ, Supriadi S, Marsetio AF, Pribadi PM, Suharno B. The potential of carbonate apatite as an alternative bone substitute material. Med J Indonesia. 2019;28(1):92–97. doi:10.13181/mji.v28i1.2681
  • Chissov V, Sviridova I, Sergeeva N, et al. Study of in vivo biocompatibility and dynamics of replacement of rat shin defect with porous granulated bioceramic materials. Bull Exp Biol Med. 2008;146(1):139–143. doi:10.1007/s10517-008-0222-3
  • Hing K, Annaz B, Saeed S, Revell P, Buckland T. Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci. 2005;16(5):467–475. doi:10.1007/s10856-005-6988-1
  • Bignon A, Chouteau J, Chevalier J, et al. Effect of micro-and macroporosity of bone substitutes on their mechanical properties and cellular response. J Mater Sci. 2003;14(12):1089–1097. doi:10.1023/b:jmsm.0000004006.90399.b4
  • Zia-Ul-Haq M, Riaz M, Modhi AO. Carotenoids and bone health. In: Carotenoids: Structure and Function in the Human Body. Springer; 2021:697–713.
  • Rao AV, Rao LG. Carotenoids and human health. Pharmacol Res. 2007;55(3):207–216. doi:10.1016/j.phrs.2007.01.012
  • Dai Z, Wang R, Ang LW, Low YL, Yuan JM, Koh WP. Protective effects of dietary carotenoids on risk of hip fracture in men: the Singapore Chinese Health Study. J Bone Miner Res. 2014;29(2):408–417. doi:10.1002/jbmr.2041
  • Xu J, Song C, Song X, Zhang X, Li X. Carotenoids and risk of fracture: a meta-analysis of observational studies. Oncotarget. 2017;8(2):2391. doi:10.18632/oncotarget.13678
  • Uchiyama S, Yamaguchi M. Oral administration of β-cryptoxanthin prevents bone loss in ovariectomized rats. Int J Mol Med. 2006;17(1):15–20.
  • Fuad NIN, Sekar M, Gan SH, Lum PT, Vaijanathappa J, Ravi SL. A comprehensive review on its chemical, biological activities and therapeutic potentials; 2020.
  • Tominari T, Matsumoto C, Watanabe K, et al. Lutein, a carotenoid, suppresses osteoclastic bone resorption and stimulates bone formation in cultures. Biosci Biotechnol Biochem. 2017;81(2):302–306. doi:10.1080/09168451.2016.1243983
  • Kim L, Rao AV, Rao LG. Lycopene II—effect on osteoblasts: the carotenoid lycopene stimulates cell proliferation and alkaline phosphatase activity of SaOS-2 cells. J Med Food. 2003;6(2):79–86. doi:10.1089/109662003322233468
  • Oliveira GR, Vargas-Sanchez PK, Fernandes RR, et al. Lycopene influences osteoblast functional activity and prevents femur bone loss in female rats submitted to an experimental model of osteoporosis. J Bone Mineral Metabol. 2019;37(4):658–667. doi:10.1007/s00774-018-0970-8
  • Ermakov IV, Ermakova MR, Rosenberg TD, Gellermann W. Optical detection of carotenoid antioxidants in human bone and surrounding tissue. J Biomed Opt. 2013;18(11):117006. doi:10.1117/1.JBO.18.11.117006
  • Wang S, Zhang J, Ma J, et al. Applying Pb2+ to probe the dissolution of carbonated hydroxylapatite by enterobacter sp.: a new insight into the bioerosion of tooth mineral. J Biomed Mater Res Part B. 2021;109(8):1230–1238. doi:10.1002/jbm.b.34784
  • Liu Z, Liang H, Shi T, et al. Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceram Int. 2019;45(8):11079–11086. doi:10.1016/j.ceramint.2019.02.195
  • Cao Y, Shi T, Jiao C, et al. Fabrication and properties of zirconia/hydroxyapatite composite scaffold based on digital light processing. Ceram Int. 2020;46(2):2300–2308. doi:10.1016/j.ceramint.2019.09.219
  • Antonakos A, Liarokapis E, Leventouri T. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials. 2007;28(19):3043–3054. doi:10.1016/j.biomaterials.2007.02.028
  • Fleet ME. Infrared spectra of carbonate apatites: ν2-Region bands. Biomaterials. 2009;30(8):1473–1481. doi:10.1016/j.biomaterials.2008.12.007
  • Bhatt RA, Rozental TD. Bone graft substitutes. Hand Clinics. 2012;28(4):457–468. doi:10.1016/j.hcl.2012.08.001
  • Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114–124. doi:10.4161/org.23306
  • Wang S, Zhang P, Kong X, et al. Delicate changes of bioapatite mineral in pig femur with addition of dietary xylooligosaccharide: evidences from Raman spectroscopy and ICP. Anim Sci J. 2017;88(11):1820–1826.
  • Lin K, Wu C, Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 2014;10(10):4071–4102. doi:10.1016/j.actbio.2014.06.017
  • Best S, Porter A, Thian E, Huang J. Bioceramics: past, present and for the future. J Eur Ceram Soc. 2008;28(7):1319–1327. doi:10.1016/j.jeurceramsoc.2007.12.001
  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–1616. doi:10.1016/j.freeradbiomed.2010.09.006
  • Chatterjee S. Oxidative stress, inflammation, and disease. In: Oxidative Stress and Biomaterials. Elsevier; 2016:35–58.
  • Spector JA, Greenwald JA, Warren SM, et al. Co-culture of osteoblasts with immature dural cells causes an increased rate and degree of osteoblast differentiation. Plast Reconst Surg. 2002;109(2):631–642, discussion 643. doi:10.1097/00006534-200202000-00033
  • Levi B, Nelson ER, Li S, et al. Dura mater stimulates human adipose-derived stromal cells to undergo bone formation in mouse calvarial defects. Stem Cells. 2011;29(8):1241–1255. doi:10.1002/stem.670
  • Yamaguchi M. β-Cryptoxanthin and bone metabolism: the preventive role in osteoporosis. J Health Sci. 2008;54(4):356–369. doi:10.1248/jhs.54.356
  • Yamaguchi M, Uchiyama S. β-Criptoxanthin stimulates bone formation and inhibits bone resorption in tissue culture in vitro. Mol Cell Biochem. 2004;258(1):137–144. doi:10.1023/B:MCBI.0000012848.50541.19
  • Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8(3):133–143. doi:10.1038/nrrheum.2012.1
  • Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–555. doi:10.1016/j.injury.2011.03.031
  • Kolar P, Schmidt-Bleek K, Schell H, et al. The early fracture hematoma and its potential role in fracture healing. Tissue Eng B. 2010;16(4):427–434. doi:10.1089/ten.teb.2009.0687