203
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Blood-Nanoparticle Interactions Create a Brain Delivery Superhighway for Doxorubicin

, , , , , , , , ORCID Icon & ORCID Icon show all
Pages 2039-2056 | Received 10 Oct 2023, Accepted 09 Jan 2024, Published online: 04 Mar 2024

References

  • Cheo STT, Lim GH, Lim KHC. Glioblastoma multiforme outcomes of 107 patients treated in two Singapore institutions. Singapore Med J. 2017;58(1):41–45. doi:10.11622/smedj.2016044
  • Liang SK, Hsieh MS, Lee MR, Keng LT, Ko JC, Shih JY. Real-world experience of Afatinib as a first-line therapy for advanced EGFR mutation-positive lung adenocarcinoma. Oncotarget. 2017;8(52):90430–90443. doi:10.18632/oncotarget.19563
  • Lombardo SM, Schneider M, Türeli AE, Günday Türeli N. Key for crossing the BBB with nanoparticles: the rational design. Beilstein J. Nanotechnol. 2020;11:866–883. doi:10.3762/bjnano.11.72
  • Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release. 2012;161(2):264–273. doi:10.1016/j.jconrel.2011.08.017
  • Zhao M, van Straten D, Broekman MLD, Preat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics. 2020;10(3):1355–1372. doi:10.7150/thno.38147
  • Feczko T, Piiper A, Ansar S, et al. Stimulating brain recovery after stroke using theranostic albumin nanocarriers loaded with nerve growth factor in combination therapy. J Control Release. 2019;293:63–72. doi:10.1016/j.jconrel.2018.11.017
  • Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm. 2009;71(2):251–256. doi:10.1016/j.ejpb.2008.08.021
  • Zensi A, Begley D, Pontikis C, et al. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain. J Drug Target. 2010;18(10):842–848. doi:10.3109/1061186X.2010.513712
  • Zensi A, Begley D, Pontikis C, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release. 2009;137(1):78–86. doi:10.1016/j.jconrel.2009.03.002
  • Gosselet F, Loiola RA, Roig A, Rosell A, Culot M. Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int. 2021;144:104952. doi:10.1016/j.neuint.2020.104952
  • Kovshova T, Osipova N, Alekseeva A, et al. Exploring the interplay between drug release and targeting of lipid-like polymer nanoparticles loaded with doxorubicin. Molecules. 2021;26(4):831. doi:10.3390/molecules26040831
  • Pardridge WM, Chou T. Mathematical models of blood-brain barrier transport of monoclonal antibodies targeting the transferrin receptor and the insulin receptor. Pharmaceuticals. 2021;14(6):535. doi:10.3390/ph14060535
  • Pardridge WM. Delivery of biologics across the blood-brain barrier with molecular trojan horse technology. BioDrugs. 2017;31(6):503–519. doi:10.1007/s40259-017-0248-z
  • Kouhi A, Pachipulusu V, Kapenstein T, Hu P, Epstein AL, Khawli LA. Brain disposition of antibody-based therapeutics: dogma, approaches and perspectives. Int J Mol Sci. 2021;22(12):6442. doi:10.3390/ijms22126442
  • Pulgar VM, Berlin S, Olszakier S, Pahari SK, Kahn I. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci. 2019;13:12. doi:10.3389/fnins.2019.00012
  • Sade H, Baumgartner C, Hugenmatter A, Moessner E, Freskgård P-O, Niewoehner J. A Human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS One. 2014;9(4):e96340. doi:10.1371/journal.pone.0096340
  • Bronger H, König J, Kopplow K, et al. ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res. 2005;65(24):11419–11428. doi:10.1158/0008-5472.CAN-05-1271
  • Parvez MM, Sadighi A, Ahn Y, Keller SF, Enoru JO. Uptake transporters at the blood-brain barrier and their role in brain drug disposition. Pharmaceutics. 2023;15(10):2473. doi:10.3390/pharmaceutics15102473
  • Barui S, Saha S, Mondal G, Haseena S, Chaudhuri A. Simultaneous delivery of doxorubicin and curcumin encapsulated in liposomes of pegylated RGDK-lipopeptide to tumor vasculature. Biomaterials. 2014;35(5):1643–1656. doi:10.1016/j.biomaterials.2013.10.074
  • Hoosain FG, Choonara YE, Tomar LK, et al. Bypassing P-glycoprotein drug efflux mechanisms: possible applications in pharmacoresistant schizophrenia therapy. Biomed Res Int. 2015;2015:484963. doi:10.1155/2015/484963
  • Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res. 1997;14(3):325–328. doi:10.1023/A:1012098005098
  • Wohlfart S, Khalansky AS, Gelperina S, Begley D, Kreuter J. Kinetics of transport of doxorubicin bound to nanoparticles across the blood-brain barrier. J Control Release. 2011;154(1):103–107. doi:10.1016/j.jconrel.2011.05.010
  • Kreuter J, Ramge P, Petrov V, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res. 2003;20(3):409–416. doi:10.1023/A:1022604120952
  • Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-Coated nanoparticles. Pharm Res. 1999;16(10):1564–1569. doi:10.1023/A:1018983904537
  • Janas C, Mast MP, Kirsamer L, et al. The dispersion releaser technology is an effective method for testing drug release from nanosized drug carriers. Eur J Pharm Biopharm. 2017;115:73–83. doi:10.1016/j.ejpb.2017.02.006
  • Modh H, Fang DJ, Ou YH, et al. Injectable drug delivery systems of doxorubicin revisited: in vitro-in vivo relationships using human clinical data. Int J Pharm. 2021;608:121073. doi:10.1016/j.ijpharm.2021.121073
  • Li Z, Ramirez G, Tang R, et al. Modeling digestion, absorption, and ketogenesis after administration of tricaprilin formulations to humans. Eur J Pharm Biopharm. 2023;182:41–52. doi:10.1016/j.ejpb.2022.11.022
  • Nagpal S, Braner S, Modh H, et al. A physiologically-based nanocarrier biopharmaceutics model to reverse-engineer the in vivo drug release. Eur J Pharm Biopharm. 2020;153:257–272. doi:10.1016/j.ejpb.2020.06.004
  • Mast MP, Modh H, Champanhac C, et al. Nanomedicine at the crossroads - a quick guide for ivivc. Adv Drug Deliv Rev. 2021;179:113829. doi:10.1016/j.addr.2021.113829
  • Traynard P, Ayral G, Twarogowska M, Chauvin J. Efficient pharmacokinetic modeling workflow with the monolixsuite: a case study of remifentanil. CPT Pharmacometrics Syst Pharmacol. 2020;9(4):198–210. doi:10.1002/psp4.12500
  • Ruiz-Molina D, Mao X, Alfonso-Triguero P, et al. Advances in preclinical/clinical glioblastoma treatment: can nanoparticles be of help? Cancer. 2022;14(19):4960. doi:10.3390/cancers14194960
  • Pippa LF, Oliveira ML, Rocha A, de Andrade JM, Lanchote VL. Total, renal and hepatic clearances of doxorubicin and formation clearance of doxorubicinol in patients with breast cancer: estimation of doxorubicin hepatic extraction ratio. J Pharm Biomed Anal. 2020;185:113231. doi:10.1016/j.jpba.2020.113231
  • Brenner JS, Pan DC, Myerson JW, et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat Commun. 2018;9(1):2684. doi:10.1038/s41467-018-05079-7
  • Bisso PW, Gaglione S, Guimarães PPG, et al. Nanomaterial interactions with human neutrophils. ACS Biomater Sci Eng. 2018;4(2):4255–4265. doi:10.1021/acsbiomaterials.8b01062
  • Zheng Y, Ma L, Sun Q. Clinically-relevant ABC transporter for anti-cancer drug resistance. Front Pharmacol. 2021;4:12.
  • Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurg. 1995;83(6):1029–1037. doi:10.3171/jns.1995.83.6.1029
  • Hao J, Chen J, Wang M, et al. Neutrophils, as “Trojan horses”, participate in the delivery of therapeutical PLGA nanoparticles into a tumor based on the chemotactic effect. Drug Deliv. 2020;27(1):1–14. doi:10.1080/10717544.2019.1701141
  • Sun W, Xie C, Wang H, Hu Y. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials. 2004;4:25.