300
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Application of Nanovaccines in Autoimmune Diseases

&
Pages 367-388 | Received 06 Nov 2023, Accepted 05 Jan 2024, Published online: 11 Jan 2024

References

  • Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Internal Med. 2015;278(4):369–395. doi:10.1111/joim.12395
  • Juarranz Y. Molecular and cellular basis of autoimmune diseases. Cells. 2021;10:2.
  • Moorman CD, Sohn SJ, Phee H. Emerging therapeutics for immune tolerance: tolerogenic vaccines, T cell therapy, and IL-2 therapy. Front Immunol. 2021;12:657768. doi:10.3389/fimmu.2021.657768
  • Salinas GF, Braza F, Brouard S, Tak PP, Baeten D. The role of B lymphocytes in the progression from autoimmunity to autoimmune disease. Clin Immunol. 2013;146(1):34–45. doi:10.1016/j.clim.2012.10.005
  • Hang LM, Nakamura RM. Current concepts and advances in clinical laboratory testing for autoimmune diseases. Crit Rev Clin Lab Sci. 1997;34(3):275–311. doi:10.3109/10408369708998095
  • Avrameas S, Selmi C. Natural autoantibodies in the physiology and pathophysiology of the immune system. J Autoimmun. 2013;41:46–49. doi:10.1016/j.jaut.2013.01.006
  • Zhang Y, Zhang L, Wang M, Li P. The applications of nanozymes in neurological diseases: from mechanism to design. Theranostics. 2023;13(8):2492–2514. doi:10.7150/thno.83370
  • Zhang Y, Yu W, Chen M, Zhang B, Zhang L, Li P. The applications of nanozymes in cancer therapy: based on regulating pyroptosis, ferroptosis and autophagy of tumor cells. Nanoscale. 2023;15(29):12137–12156. doi:10.1039/d3nr01722b
  • Clemente-Casares X, Blanco J, Ambalavanan P, et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature. 2016;530:7591):434–40. doi:10.1038/nature16962
  • Tsai S, Shameli A, Yamanouchi J, et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity. 2010;32(4):568–580. doi:10.1016/j.immuni.2010.03.015
  • Cifuentes-Rius A, Desai A, Yuen D, Johnston APR, Voelcker NH. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nature Nanotechnol. 2021;16(1):37–46. doi:10.1038/s41565-020-00810-2
  • Tang Q, Vincenti F. Transplant trials with Tregs: perils and promises. J Clin Invest. 2017;127(7):2505–2512. doi:10.1172/jci90598
  • Chen L, Huang H, Zhang W, Ding F, Fan Z, Zeng Z. Exosomes derived from T regulatory cells suppress CD8+ cytotoxic T lymphocyte proliferation and prolong liver allograft survival. Med Sci Monit. 2019;25:4877–4884. doi:10.12659/msm.917058
  • Sengupta A, Azharuddin M, Al-Otaibi N, Hinkula J. Efficacy and immune response elicited by gold nanoparticle- based nanovaccines against infectious diseases. Vaccines. 2022;10(4):505. doi:10.3390/vaccines10040505
  • Mateu Ferrando R, Lay L, Polito L. Gold nanoparticle-based platforms for vaccine development. Drug Discov Today. 2020;38:57–67. doi:10.1016/j.ddtec.2021.02.001
  • Ahmad S, Zamry AA, Tan HT, Wong KK, Lim J, Mohamud R. Targeting dendritic cells through gold nanoparticles: a review on the cellular uptake and subsequent immunological properties. Mol Immunol. 2017;91:123–133. doi:10.1016/j.molimm.2017.09.001
  • Almeida JPM, Lin AY, Figueroa ER, Foster AE, Drezek RA. In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small. 2015;11(12):1453–1459. doi:10.1002/smll.201402179
  • Yeste A, Nadeau M, Burns EJ, Weiner HL, Quintana FJ. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2012;109(28):11270–11275. doi:10.1073/pnas.1120611109
  • Yeste A, Takenaka MC, Mascanfroni ID, et al. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. Sci Signaling. 2016;9(433):ra61. doi:10.1126/scisignal.aad0612
  • Nguyen TL, Choi Y, Im J, et al. Immunosuppressive biomaterial-based therapeutic vaccine to treat multiple sclerosis via re-establishing immune tolerance. Nat Commun. 2022;13(1):7449. doi:10.1038/s41467-022-35263-9
  • Cappellano G, Woldetsadik AD, Orilieri E, et al. Subcutaneous inverse vaccination with PLGA particles loaded with a MOG peptide and IL-10 decreases the severity of experimental autoimmune encephalomyelitis. Vaccine. 2014;32(43):5681–5689. doi:10.1016/j.vaccine.2014.08.016
  • Hunter Z, McCarthy DP, Yap WT, et al. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS nano. 2014;8(3):2148–2160. doi:10.1021/nn405033r
  • Al-Ghobashy MA, ElMeshad AN, Abdelsalam RM, Nooh MM, Al-Shorbagy M, Laible G. Development and pre-clinical evaluation of recombinant human myelin basic protein nano therapeutic vaccine in experimental autoimmune encephalomyelitis mice animal model. Sci Rep. 2017;7:46468. doi:10.1038/srep46468
  • Maldonado RA, LaMothe RA, Ferrari JD, et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci USA. 2015;112(2):E156–65. doi:10.1073/pnas.1408686111
  • Park J, Le QV, Wu Y, Lee J, Oh YK. Tolerogenic nanovaccine for prevention and treatment of autoimmune encephalomyelitis. Adv Mater. 2023;35(1):e2202670. doi:10.1002/adma.202202670
  • Feng Q, Yang X, Hao Y, et al. Cancer cell membrane-biomimetic nanoplatform for enhanced sonodynamic therapy on breast cancer via autophagy regulation strategy. ACS Appl Mater Inter. 2019;11(36):32729–32738. doi:10.1021/acsami.9b10948
  • Yaron PN, Holt BD, Short PA, Losche M, Islam MF, Dahl KN. Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration. J Nanobiotechnol. 2011;9:45. doi:10.1186/1477-3155-9-45
  • Maruyama K, Haniu H, Saito N, et al. Endocytosis of multiwalled carbon nanotubes in bronchial epithelial and mesothelial cells. Biomed Res Int. 2015;2015:793186. doi:10.1155/2015/793186
  • Hassan HA, Smyth L, Rubio N, et al. Carbon nanotubes’ surface chemistry determines their potency as vaccine nanocarriers in vitro and in vivo. J Control Release. 2016;225:205–216. doi:10.1016/j.jconrel.2016.01.030
  • Chemmannur SV, Bhagat P, Mirlekar B, Paknikar KM, Chattopadhyay S. Carbon nanospheres mediated delivery of nuclear matrix protein SMAR1 to direct experimental autoimmune encephalomyelitis in mice. Int J Nanomed. 2016;11:2039–2051. doi:10.2147/IJN.S93571
  • Tomic S, Janjetovic K, Mihajlovic D, et al. Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials. 2017;146:13–28. doi:10.1016/j.biomaterials.2017.08.040
  • Tosic J, Stanojevic Z, Vidicevic S, et al. Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats. Neuropharmacology. 2019;146:95–108. doi:10.1016/j.neuropharm.2018.11.030
  • Nigam S, Mohapatra J, Makela AV, et al. Shape anisotropy-governed high-performance nanomagnetosol for in vivo magnetic particle imaging of lungs. Small. 2023:e2305300. doi:10.1002/smll.202305300
  • Pusic K, Aguilar Z, McLoughlin J, et al. Iron oxide nanoparticles as a clinically acceptable delivery platform for a recombinant blood-stage human malaria vaccine. FASEB J. 2013;27(3):1153–1166. doi:10.1096/fj.12-218362
  • Rezaei M, Hosseini SN, Khavari-Nejad RA, Najafi F, Mahdavi M. HBs antigen and mannose loading on the surface of iron oxide nanoparticles in order to immuno-targeting: fabrication, characterization, cellular and humoral immunoassay. Artif Cells Nanomed Biotechnol. 2019;47(1):1543–1558. doi:10.1080/21691401.2019.1577888
  • Lee JH, Ju JE, Kim BI, et al. Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem. 2014;33(12):2759–2766. doi:10.1002/etc.2735
  • Chen S, Chen S, Zeng Y, et al. Size-dependent superparamagnetic iron oxide nanoparticles dictate interleukin-1β release from mouse bone marrow-derived macrophages. J Appl Toxicol. 2018;38(7):978–986. doi:10.1002/jat.3606
  • Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep. 2018;8(1):2082. doi:10.1038/s41598-018-19628-z
  • Su Y, Zhang B, Sun R, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Delivery. 2021;28(1):1397–1418. doi:10.1080/10717544.2021.1938756
  • Pohlit H, Bellinghausen I, Frey H, Saloga J. Recent advances in the use of nanoparticles for allergen-specific immunotherapy. Allergy. 2017;72(10):1461–1474. doi:10.1111/all.13199
  • McCarthy DP, Yap JW, Harp CT, et al. An antigen-encapsulating nanoparticle platform for T(H)1/17 immune tolerance therapy. Nanomedicine. 2017;13(1):191–200. doi:10.1016/j.nano.2016.09.007
  • Kuo R, Saito E, Miller SD, Shea LD. Peptide-conjugated nanoparticles reduce positive co-stimulatory expression and T cell activity to induce tolerance. Mol Ther. 2017;25(7):1676–1685. doi:10.1016/j.ymthe.2017.03.032
  • LaMothe RA, Kolte PN, Vo T, et al. Tolerogenic nanoparticles induce antigen-specific regulatory T cells and provide therapeutic efficacy and transferrable tolerance against experimental autoimmune encephalomyelitis. Front Immunol. 2018;9:281. doi:10.3389/fimmu.2018.00281
  • An M, Li M, Xi J, Liu H. Silica nanoparticle as a lymph node targeting platform for vaccine delivery. ACS Appl Mater Inter. 2017;9(28):23466–23475. doi:10.1021/acsami.7b06024
  • Howard GP, Verma G, Ke X, et al. Critical size limit of biodegradable nanoparticles for enhanced lymph node trafficking and paracortex penetration. Nano Res. 2019;12(4):837–844. doi:10.1007/s12274-019-2301-3
  • Gu P, Xu S, Zhou S, et al. Optimization of angelica sinensis polysaccharide-loaded Poly (lactic-co-glycolicacid) nanoparticles by RSM and its immunological activity in vitro. Int J Biol Macromol. 2018;107(Pt A):222–229. doi:10.1016/j.ijbiomac.2017.08.176
  • Lim HJ, Kim JK, Park JS. Complexation of Apoptotic Genes with Polyethyleneimine (PEI)-Coated Poly-(DL)-Lactic-Co-Glycolic Acid Nanoparticles for Cancer Cell Apoptosis. J Biomed Nanotechnol. 2015;11(2):211–225. doi:10.1166/jbn.2015.1880
  • Kang BS, Choi JS, Lee SE, et al. Enhancing the in vitro anticancer activity of albendazole incorporated into chitosan-coated PLGA nanoparticles. Carbohydr Polym. 2017;159:39–47. doi:10.1016/j.carbpol.2016.12.009
  • Gao X, Liu N, Wang Z, et al. Development and optimization of chitosan nanoparticle-based intranasal vaccine carrier. Molecules. 2021;27:1.
  • Bedford JG, Caminschi I, Wakim LM. Intranasal delivery of a chitosan-hydrogel vaccine generates nasal tissue resident memory CD8(+) T cells that are protective against influenza virus infection. Vaccines. 2020;8:4.
  • Zhuo SH, Wu JJ, Zhao L, Li WH, Zhao YF, Li YM. A chitosan-mediated inhalable nanovaccine against SARS-CoV-2. Nano Res. 2022;15(5):4191–4200. doi:10.1007/s12274-021-4012-9
  • Duran V, Yasar H, Becker J, et al. Preferential uptake of chitosan-coated PLGA nanoparticles by primary human antigen presenting cells. Nanomedicine. 2019;21:102073. doi:10.1016/j.nano.2019.102073
  • Kadiyala I, Loo Y, Roy K, Rice J, Leong KW. Transport of chitosan-DNA nanoparticles in human intestinal M-cell model versus normal intestinal enterocytes. Eur J Pharm Sci. 2010;39(1–3):103–109. doi:10.1016/j.ejps.2009.11.002
  • Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: types, properties and applications in drug delivery. IET Nanobiotechnol. 2021;15(1):19–27. doi:10.1049/nbt2.12018
  • Li C, Zhang X, Chen Q, et al. Synthetic polymeric mixed micelles targeting lymph nodes trigger enhanced cellular and humoral immune responses. ACS Appl Mater Inter. 2018;10(3):2874–2889. doi:10.1021/acsami.7b14004
  • Singha S, Shao K, Ellestad KK, Yang Y, Santamaria P. Nanoparticles for immune stimulation against infection, cancer, and autoimmunity. ACS nano. 2018;12(11):10621–10635. doi:10.1021/acsnano.8b05950
  • Whitener R, Henchir JJ, Miller TA, et al. Localization of multi-lamellar vesicle nanoparticles to injured brain tissue in a controlled cortical impact injury model of traumatic brain injury in rodents. Neurotr Rep. 2022;3(1):158–167. doi:10.1089/neur.2021.0049
  • Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–1094. doi:10.1038/s41578-021-00358-0
  • Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem. 2010;49(36):6288–6308. doi:10.1002/anie.200902672
  • Cheng X, Smith JC. Biological membrane organization and cellular signaling. Chem Rev. 2019;119(9):5849–5880. doi:10.1021/acs.chemrev.8b00439
  • Ai X, Hu M, Wang Z, et al. Recent advances of membrane-cloaked nanoplatforms for biomedical applications. Bioconjugate Chem. 2018;29(4):838–851. doi:10.1021/acs.bioconjchem.8b00103
  • Liu G, Zhao X, Zhang Y, et al. Engineering biomimetic platesomes for pH-responsive drug delivery and enhanced antitumor activity. Adv Mater. 2019;31(32):e1900795. doi:10.1002/adma.201900795
  • Wang L, Wang X, Yang F, et al. Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. Nano Today. 2021;40:101280. doi:10.1016/j.nantod.2021.101280
  • Shi Y, Lu Y, You J. Antigen transfer and its effect on vaccine-induced immune amplification and tolerance. Theranostics. 2022;12(13):5888–5913. doi:10.7150/thno.75904
  • Fan X, Wang F, Zhou X, Chen B, Chen G. Size-dependent antibacterial immunity of staphylococcus aureus protoplast-derived particulate vaccines. Int j Nanomed. 2020;15:10321–10330. doi:10.2147/IJN.S285895
  • Jorquera PA, Tripp RA. Synthetic biodegradable microparticle and nanoparticle vaccines against the respiratory syncytial virus. Vaccines. 2016;4:4.
  • Pelaz B, Del Pino P, Maffre P, et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS nano. 2015;9(7):6996–7008. doi:10.1021/acsnano.5b01326
  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Delivery Rev. 2009;61(6):428–437. doi:10.1016/j.addr.2009.03.009
  • Breznica P, Koliqi R, Daka A. A review of the current understanding of nanoparticles protein Corona composition. Med Pharm Rep. 2020;93(4):342–350. doi:10.15386/mpr-1756
  • Cruz LJ, Tacken PJ, Fokkink R, Figdor CG. The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells. Biomaterials. 2011;32(28):6791–6803. doi:10.1016/j.biomaterials.2011.04.082
  • Bruckner M, Fichter M, da Costa Marques R, Landfester K, Mailander V. PEG spacer length substantially affects antibody-based nanocarrier targeting of dendritic cell subsets. Pharmaceutics. 2022;14:8.
  • Cruz LJ, Tacken PJ, Rueda F, Domingo JC, Albericio F, Figdor CG. Targeting nanoparticles to dendritic cells for immunotherapy. Methods Enzymol. 2012;509:143–163. doi:10.1016/B978-0-12-391858-1.00008-3
  • Caminschi I, Proietto AI, Ahmet F, et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood. 2008;112(8):3264–3273. doi:10.1182/blood-2008-05-155176
  • Petzold C, Schallenberg S, Stern JN, Kretschmer K. Targeted antigen delivery to DEC-205(+) dendritic cells for tolerogenic vaccination. Rev Diabetic Stud. 2012;9(4):305–318. doi:10.1900/RDS.2012.9.305
  • White KL, Rades T, Furneaux RH, Tyler PC, Hook S. Mannosylated liposomes as antigen delivery vehicles for targeting to dendritic cells. J Pharm Pharmacol. 2006;58(6):729–737. doi:10.1211/jpp.58.6.0003
  • Dudziak D, Kamphorst AO, Heidkamp GF, et al. Differential antigen processing by dendritic cell subsets in vivo. Science. 2007;315(5808):107–11. doi:10.1126/science.1136080
  • den Haan JM, Lehar SM, Bevan MJ. CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med. 2000;192(12):1685–1696. doi:10.1084/jem.192.12.1685
  • Price JD, Hotta-Iwamura C, Zhao Y, Beauchamp NM, Tarbell KV. DCIR2+ cDC2 DCs and Zbtb32 Restore CD4+ T-Cell Tolerance and Inhibit Diabetes. Diabetes. 2015;64(10):3521–3531. doi:10.2337/db14-1880
  • Tabansky I, Keskin DB, Watts D, et al. Targeting DEC-205(-)DCIR2(+) dendritic cells promotes immunological tolerance in proteolipid protein-induced experimental autoimmune encephalomyelitis. Mol Med. 2018;24(1):17. doi:10.1186/s10020-018-0017-6
  • Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm. 2005;298(2):315–322. doi:10.1016/j.ijpharm.2005.03.035
  • Koren E, Apte A, Sawant RR, Grunwald J, Torchilin VP. Cell-penetrating TAT peptide in drug delivery systems: proteolytic stability requirements. Drug Delivery. 2011;18(5):377–384. doi:10.3109/10717544.2011.567310
  • Pujals S, Giralt E. Proline-rich, amphipathic cell-penetrating peptides. Adv Drug Delivery Rev. 2008;60(4–5):473–484. doi:10.1016/j.addr.2007.09.012
  • Lindgren M, Rosenthal-Aizman K, Saar K, et al. Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol. 2006;71(4):416–425. doi:10.1016/j.bcp.2005.10.048
  • Deshayes S, Plenat T, Aldrian-Herrada G, Divita G, Le Grimellec C, Heitz F. Primary amphipathic cell-penetrating peptides: structural requirements and interactions with model membranes. Biochemistry. 2004;43(24):7698–7706. doi:10.1021/bi049298m
  • Yu X, Wang Y, Xia Y, Zhang L, Yang Q, Lei J. A DNA vaccine encoding VP22 of herpes simplex virus type I (HSV-1) and OprF confers enhanced protection from Pseudomonas aeruginosa in mice. Vaccine. 2016;34(37):4399–4405. doi:10.1016/j.vaccine.2016.07.017
  • Liu X, Liu J, Liu D, et al. A cell-penetrating peptide-assisted nanovaccine promotes antigen cross-presentation and anti-tumor immune response. Biomater Sci. 2019;7(12):5516–5527. doi:10.1039/c9bm01183h
  • Koo JH, Kim WJ, Choi JM. CPP applications in immune modulation and disease therapy. Methods Mol Biol. 2022;2383:347–368. doi:10.1007/978-1-0716-1752-6_23
  • Lim S, Kim WJ, Kim YH, et al. dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. Nat Commun. 2015;6:8244. doi:10.1038/ncomms9244
  • Koo JH, Kim DH, Cha D, Kang MJ, Choi JM. LRR domain of NLRX1 protein delivery by dNP2 inhibits T cell functions and alleviates autoimmune encephalomyelitis. Theranostics. 2020;10(7):3138–3150. doi:10.7150/thno.43441
  • Lee HG, Kim LK, Choi JM. NFAT-specific inhibition by dNP2-VIVITAmeliorates autoimmune encephalomyelitisby regulation of Th1 and Th17. Mol Ther Meth Clin Develop. 2020;16:32–41. doi:10.1016/j.omtm.2019.10.006
  • Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–242. doi:10.1111/j.1600-065X.2010.00923.x
  • Li H, Zheng C, Han J, Zhu J, Liu S, Jin T. PD-1/PD-L1 axis as a potential therapeutic target for multiple sclerosis: a T cell perspective. Front Cell Neurosci. 2021;15:716747. doi:10.3389/fncel.2021.716747
  • Toy R, Roy K. Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng Transl Med. 2016;1(1):47–62. doi:10.1002/btm2.10005
  • Hou M, Wei Y, Zhao Z, et al. Immuno-engineered nanodecoys for the multi-target anti-inflammatory treatment of autoimmune diseases. Adv Mater. 2022;34(12):e2108817. doi:10.1002/adma.202108817