150
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

LGR5 as a Therapeutic Target of Antibody-Functionalized Biomimetic Magnetoliposomes for Colon Cancer Therapy

ORCID Icon, , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1843-1865 | Received 18 Oct 2023, Accepted 03 Jan 2024, Published online: 23 Feb 2024

References

  • Biller LH, Schrag D. Diagnosis and Treatment of Metastatic Colorectal Cancer: a Review. JAMA. 2021;325(7):669–685. doi:10.1001/JAMA.2021.0106
  • Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145–164. doi:10.3322/CAAC.21601
  • Zafar A, Drobni ZD, Lei M, et al. The efficacy and safety of cardio-protective therapy in patients with 5-FU (Fluorouracil)associated coronary vasospasm. PLoS One. 2022;17:1–10. doi:10.1371/journal.pone.0265767
  • Boyne DJ, O’Sullivan DE, Heer EV, et al. Prognostic factors of adjuvant chemotherapy discontinuation among stage III colon cancer patients: a survey of medical oncologists and a systematic review and meta-analysis. Cancer Med. 2020;9(5):1613–1627. doi:10.1002/CAM4.2843
  • Kang L, Tian Y, Xu S, Chen H. Oxaliplatin-induced peripheral neuropathy: clinical features, mechanisms, prevention and treatment. J Neurol. 2021;268(9):3269–3282. doi:10.1007/S00415-020-09942-W
  • Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm. 2022;3:3. doi:10.1002/mco2.163
  • Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79. doi:10.1016/J.EJPB.2015.03.018
  • Al-Zoubi MS, Al-Zoubi RM. Nanomedicine tactics in cancer treatment: challenge and hope. Crit Rev Oncol Hematol. 2022;174:103677. doi:10.1016/J.CRITREVONC.2022.103677
  • Valverde-Tercedor C, Montalbán-López M, Perez-Gonzalez T, et al. Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1. Appl Microbiol Biotechnol. 2015;99(12):5109–5121. doi:10.1007/S00253-014-6326-Y/FIGURES/4
  • García Rubia G, Peigneux A, Jabalera Y, et al. PH-dependent adsorption release of doxorubicin on mamc-biomimetic magnetite nanoparticles. Langmuir. 2018;34(45):13713–13724. doi:10.1021/ACS.LANGMUIR.8B03109/ASSET/IMAGES/LARGE/LA-2018-03109E_0006.JPEG
  • Peigneux A, Oltolina F, Colangelo D, et al. Functionalized biomimetic magnetic nanoparticles as effective nanocarriers for targeted chemotherapy. Part Part Syst Charact. 2019;36(6):1900057. doi:10.1002/PPSC.201900057
  • Oltolina F, Peigneux A, Colangelo D, et al. Biomimetic magnetite nanoparticles as targeted drug nanocarriers and mediators of hyperthermia in an experimental cancer model. Cancers. 2020;12(9):1–25. doi:10.3390/CANCERS12092564
  • Iglesias GR, Jabalera Y, Peigneux A, Fernández BLC, Delgado ÁV, Jimenez-Lopez C. Enhancement of magnetic hyperthermia by mixing synthetic inorganic and biomimetic magnetic nanoparticles. Pharmaceutics. 2019;11(6):273. doi:10.3390/PHARMACEUTICS11060273
  • Jabalera Y, Fernández-Vivas A, Iglesias GR, Delgado ÁV, Jimenez-Lopez C. Magnetoliposomes of mixed biomimetic and inorganic magnetic nanoparticles as enhanced hyperthermia agents. Colloids Surf B Biointerfaces. 2019;183:110435. doi:10.1016/J.COLSURFB.2019.110435
  • Jabalera Y, Oltolina F, Peigneux A, et al. Nanoformulation design including mamc-mediated biomimetic nanoparticles allows the simultaneous application of targeted drug delivery and magnetic hyperthermia. Polymers (Basel). 2020;12(8):1832. doi:10.3390/POLYM12081832
  • Jabalera Y, Garcia-Pinel B, Ortiz R, et al. Oxaliplatin-biomimetic magnetic nanoparticle assemblies for colon cancer-targeted chemotherapy: an in vitro study. Pharmaceutics. 2019;11:8. doi:10.3390/PHARMACEUTICS11080395
  • Garcia-Pinel B, Jabalera Y, Ortiz R, et al. Biomimetic magnetoliposomes as oxaliplatin nanocarriers: in vitro study for potential application in colon cancer. Pharmaceutics. 2020;12(6):1–20. doi:10.3390/PHARMACEUTICS12060589
  • Chen R, Huang Y, Wang L, et al. Cetuximab functionalization strategy for combining active targeting and antimigration capacities of a hybrid composite nanoplatform applied to deliver 5-fluorouracil: toward colorectal cancer treatment. Biomater Sci. 2021;9(6):2279–2294. doi:10.1039/D0BM01904F
  • Andrade F, Rafael D, Vilar-Hernández M, et al. Polymeric micelles targeted against CD44v6 receptor increase niclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo. J Control Release. 2021;331:198–212. doi:10.1016/J.JCONREL.2021.01.022
  • He F, Wen N, Xiao D, et al. Aptamer-based targeted drug delivery systems: current potential and challenges. Curr Med Chem. 2020;27(13):2189–2219. doi:10.2174/0929867325666181008142831
  • Tarudji AW, Kievit FM. Active targeting and transport. In: Chung EJ, Leon L editors. Nanoparticles for Biomedical Applications. Elsevier; 2020:19–36. doi:10.1016/B978-0-12-816662-8.00003-5
  • Xu N, Gao K, Luo H, Wu Y, Shen B, Liu K. Correlation of Lgr5 expression with clinicopathological features of colorectal cancer and its diagnostic and prognostic values. J BUON. 2021;26(1):87–92.
  • Cao J, Li C, Wei X, et al. Selective targeting and eradication of LGR5 + cancer stem cells using RSPO-conjugated doxorubicin liposomes. Mol Cancer Ther. 2018;17(7):1475–1485. doi:10.1158/1535-7163.MCT-17-0694/86842/AM/SELECTIVE-TARGETING-AND-ERADICATION-OF-LGR5-CSCS
  • Herpers B, Eppink B, James MI, et al. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors. Nat Cancer. 2022;3(4):418–436. doi:10.1038/S43018-022-00359-0
  • Carina Biotech Limited. A Study of CNA3103 (LGR5-targeted, Autologous CAR-T Cells) administered to subjects with metastatic colorectal cancer. Available from: https://clinicaltrials.gov/study/NCT05759728. Accessed December 5, 2023..
  • Martin JD Using XPowder: a software package for powder X-ray diffraction analysis; 2004. Available from: www.xpowder.com. Accessed February 12, 2024.
  • Garcés V, González A, Gálvez N, et al. Magneto-optical hyperthermia agents based on probiotic bacteria loaded with magnetic and gold nanoparticles. Nanoscale. 2022;14(15):5716. doi:10.1039/D1NR08513A
  • Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. doi:10.1038/nmeth.2019
  • Ortiz R, Cabeza L, Arias JL, et al. Poly(butylcyanoacrylate) and Poly(ε-caprolactone) nanoparticles loaded with 5-fluorouracil increase the cytotoxic effect of the drug in experimental colon cancer. AAPS J. 2015;17(4):918–929. doi:10.1208/S12248-015-9761-5
  • Tomitaka A, Takemura Y, Huang Z, Roy U, Nair M. Magnetoliposomes in controlled-release drug delivery systems. Crit Rev Biomed Eng. 2019;47(6):495–505. doi:10.1615/CRITREVBIOMEDENG.2020033002
  • Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27(4). doi:10.3390/MOLECULES27041372
  • Bhattacharya S, Saindane D, Prajapati BG. Liposomal drug delivery and its potential impact on cancer research. Anticancer Agents Med Chem. 2022;22(15):2671–2683. doi:10.2174/1871520622666220418141640
  • Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed. 2015;10(1):975–999. doi:10.2147/IJN.S68861
  • Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96. doi:10.1016/J.ADDR.2019.04.008
  • De Sousa E Melo F, Kurtova AV, Harnoss JM, et al. A distinct role for Lgr5 + stem cells in primary and metastatic colon cancer. Nature. 2017;543(7647):676–680. doi:10.1038/nature21713
  • Mao X, Zhang X, Zheng X, Chen Y, Xuan Z, Huang P. Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway. J Nat Med. 2021;75(3):590. doi:10.1007/S11418-021-01505-1
  • Kondo M, Araie M. Iontophoresis of 5-fluorouracil into the conjunctiva and sclera. Invest Ophthalmol Vis Sci. 1989;30(3):583–585.
  • Liang B, Shahbaz M, Wang Y, et al. Integrinβ6-targeted immunoliposomes mediate tumor-specific drug delivery and enhance therapeutic efficacy in colon carcinoma. Clin Cancer Res. 2015;21(5):1183–1195. doi:10.1158/1078-0432.CCR-14-1194
  • Corvo ML, Mendo AS, Figueiredo S, et al. Liposomes as Delivery System of a Sn(IV) complex for cancer therapy. Pharm Res. 2016;33(6):1351–1358. doi:10.1007/s11095-016-1876-6
  • Dadashi Noshahr K, Shamsi F, Valtchev P, et al. Optimization of post-insertion method to conjugate Doxil with anti-CD133 monoclonal antibodies: investigating the specific binding and cytotoxicity to colorectal cancer cells in vitro. Saudi Pharm J. 2020;28(11):1392. doi:10.1016/J.JSPS.2020.09.003
  • Park S, Wu L, Tu J, et al. Unlike LGR4, LGR5 potentiates Wnt–β-catenin signaling without sequestering E3 ligases. Sci Signal. 2020;13(660). doi:10.1126/SCISIGNAL.AAZ4051
  • Jabalera Y, Sola-Leyva A, Peigneux A, et al. Biomimetic magnetic nanocarriers drive choline kinase alpha inhibitor inside cancer cells for combined chemo-hyperthermia therapy. Pharmaceutics. 2019;11(8):408. doi:10.3390/PHARMACEUTICS11080408
  • Lubart Q, Hannestad JK, Pace H, et al. Lipid vesicle composition influences the incorporation and fluorescence properties of the lipophilic sulphonated carbocyanine dye SP-DiO. Phys Chem Chem Phys. 2020;22(16):8781–8790. doi:10.1039/C9CP04158C
  • Montero S, Seras-Franzoso J, Andrade F, et al. Intracellular delivery of anti-SMC2 antibodies against cancer stem cells. Pharmaceutics. 2020;12(2). doi:10.3390/pharmaceutics12020185
  • Vázquez-Iglesias L, Barcia-Castro L, Rodríguez-Quiroga M, De La Cadena MP, Rodŕguez-Berrocal J, Cordero OJ. Surface expression marker profile in colon cancer cell lines and sphere-derived cells suggests complexity in CD26 + cancer stem cells subsets. Biol Open. 2019;8(7). doi:10.1242/BIO.041673
  • Askri D, Ouni S, Galai S, et al. Nanoparticles in foods? A multiscale physiopathological investigation of iron oxide nanoparticle effects on rats after an acute oral exposure: trace element biodistribution and cognitive capacities. Food Chem Toxicol. 2019;127:173–181. doi:10.1016/J.FCT.2019.03.006
  • Salimi M, Sarkar S, Fathi S, et al. Biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles in BALB/c mice. Int J Nanomed. 2018;13:1483–1493. doi:10.2147/IJN.S157293
  • Awaad A. Histopathological and immunological changes induced by magnetite nanoparticles in the spleen, liver and genital tract of mice following intravaginal instillation. JOBAZ. 2015;71:32–47. doi:10.1016/J.JOBAZ.2015.03.003
  • Chrishtop VV, Mironov VA, Prilepskii AY, Nikonorova VG, Vinogradov VV. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology. 2021;15(2):167–204. doi:10.1080/17435390.2020.1842934
  • Sadeghi L, Yousefi Babadi V, Espanani HR. Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratisl Lek Listy. 2015;116(6):373–378. doi:10.4149/BLL_2015_071
  • Parivar K, Fard FM, Bayat M, Alavian SM, Motavaf M. Evaluation of iron oxide nanoparticles toxicity on liver cells of BALB/c rats. Iran Red Crescent Med J. 2016;18(1):28939. doi:10.5812/IRCMJ.28939
  • Almanaa TN, Aref M, Kakakhel MA, et al. Silica nanoparticle acute toxicity on male rattus norvegicus domestica: ethological behavior, hematological disorders, biochemical analyses, hepato-renal function, and antioxidant-immune response. Front Bioeng Biotechnol. 2022;10:1. doi:10.3389/FBIOE.2022.868111