381
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Remineralization of Dentin with Cerium Oxide and Its Potential Use for Root Canal Disinfection

, , , , , , & show all
Pages 1-17 | Received 19 Sep 2023, Accepted 12 Dec 2023, Published online: 29 Dec 2023

References

  • Eleazer PD. Glossary of endodontic terms. American Association of Endodontists; 2003.
  • Siqueira JF. Microbial causes of endodontic flare-ups. Int Endod J. 2003;36(7):453–463. doi:10.1046/j.1365-2591.2003.00671.x
  • Waltimo T, Trope M, Haapasalo M, Orstavik D. Clinical efficacy of treatment procedures in endodontic infection control and one year follow-up of periapical healing. J Endod. 2005;31(12):863–866. doi:10.1097/01.don.0000164856.27920.85
  • Pedullà E, Abiad RS, Conte G, La Rosa GRM, Rapisarda E, Neelakantan P. Root fillings with a matched-taper single cone and two calcium silicate-based sealers: an analysis of voids using micro-computed tomography. Clin Oral Investig. 2020;24(12):4487–4492. doi:10.1007/s00784-020-03313-5
  • Wu MK, Wesselink PR. Efficacy of three techniques in cleaning the apical portion of curved root canals. Oral Surg, Oral Med Oral Pathol Oral Radiol Endod. 1995;79(4):492–496. doi:10.1016/s1079-2104(05)80134-9
  • Metzger Z, Teperovich E, Cohen R, Zary R, Paqué F, Hülsmann M. The self-adjusting file (SAF). Part 3: removal of debris and smear layer-A scanning electron microscope study. J Endod. 2010;36(4):697–702. doi:10.1016/j.joen.2009.12.037
  • Jr JFS. Aetiology of root canal treatment failure: why well-treated teeth can fail. Int Endod J. 2001;34(1):1–10. doi:10.1046/j.1365-2591.2001.00396.x
  • Persoon IF, Ozok AR. Definitions and Epidemiology of Endodontic Infections. Curr Oral Health Rep. 2017;4(4):278–285. doi:10.1007/s40496-017-0161-z
  • Gergely JM, DiFiore PM. Intracanal medication in endodontic treatment: a survey of endodontic programs. Gen Dent. 1993;41(4):328–331.
  • Kumar A, Tamanna S, Iftekhar H. Intracanal medicaments - Their use in modern endodontics: a narrative review. J Oral Res Rev. 2019;11(2):94–99. doi:10.4103/jorr.jorr_3_19
  • Ng YL, Mann V, Gulabivala K. A prospective study of the factors affecting outcomes of nonsurgical root canal treatment: part 1: periapical health. Int Endod J. 2011;44(7):583–609. doi:10.1111/j.1365-2591.2011.01872.x
  • Gilbert B, Luebke RG, Jeansonne BG, Henderson JA. Calcium hydroxide in endodontics: a review. J La Dent Assoc. 1981;39(1):12–15.
  • Plutzer B, Zilm P, Ratnayake J, Cathro P. Comparative efficacy of endodontic medicaments and sodium hypochlorite against Enterococcus faecalis biofilms. Aust Dent J. 2018;63(2):208–216. doi:10.1111/adj.12580
  • Mohammadi Z, Dummer PM. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int Endod J. 2011;44(8):697–730. doi:10.1111/j.1365-2591.2011.01886.x
  • Haapasalo M, Orstavik D. In vitro infection and disinfection of dentinal tubules. J Dent Res. 1987;66(8):1375–1379. doi:10.1177/00220345870660081801
  • Wong J, Manoil D, Nasman P, Belibasakis GN, Neelakantan P. Microbiological Aspects of Root Canal Infections and Disinfection Strategies: an Update Review on the Current Knowledge and Challenges. Front Oral Health. 2021;2:672887. doi:10.3389/froh.2021.672887
  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med. 2015;2015:246012. doi:10.1155/2015/246012
  • Sánchez-Sanhueza G, Alcántara-Dufeu R, Carrillo L, Mansilla H, Novoa C, Bello-Toledo H. Ex vivo Effect of Copper Sulfate on Enterococcus faecalis in Root Canals. Int J Dermatol. 2015;9:505–510. doi:10.4067/S0718-381X2015000300024
  • Evans M, Davies JK, Sundqvist G, Figdor D. Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. Int Endod J. 2002;35(3):221–228. doi:10.1046/j.1365-2591.2002.00504.x
  • Singh KR, Nayak V, Sarkar T, Singh RP. Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC Adv. 2020;10(45):27194–27214. doi:10.1039/d0ra04736h
  • Farias IAP, Dos Santos CCL, Sampaio FC. Antimicrobial Activity of Cerium Oxide Nanoparticles on Opportunistic Microorganisms: a Systematic Review. Biomed Res Int. 2018;2018:1923606. doi:10.1155/2018/1923606
  • Zhang M, Zhang C, Zhai X, Luo F, Du Y, Yan C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci China Mater. 2019;62(11):1727–1739. doi:10.1007/s40843-019-9471-7
  • Kargozar S, Baino F, Hoseini SJ, et al. Biomedical applications of nanoceria: new roles for an old player. Nanomedicine (Lond). 2018;13(23):3051–3069. doi:10.2217/nnm-2018-0189
  • Nudelman F, Pieterse K, George A, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 2010;9(12):1004–1009. doi:10.1038/nmat2875
  • Toroian D, Lim JE, Price PA. The size exclusion characteristics of type I collagen: implications for the role of noncollagenous bone constituents in mineralization. J Biol Chem. 2007;282(31):22437–22447. doi:10.1074/jbc.M700591200
  • Zhou Z, Li J, Wang Z, et al. In-Depth Occlusion of Dentinal Tubules and Rapid Remineralization of Demineralized Dentin Induced by Polyelectrolyte-Calcium Complexes. Adv Healthc Mater. 2023:e2300100. doi:10.1002/adhm.202300100
  • Kung JC, Wang WH, Chiang YC, et al. The Antibacterial and Remineralization Effect of Silver-Containing Mesoporous Bioactive Glass Sealing and Er-YAG Laser on Dentinal Tubules Treated in a Streptococcus mutans Cultivated Environment. Pharmaceuticals (Basel). 2021;14(11):56.
  • Zhou Z, Zhang L, Li J, Shi Y, Fu B. Polyelectrolyte-calcium Complexes as a Pre-precursor Induce Biomimetic Mineralization of Collagen. Nanoscale. 2021;13(2):953–967. doi:10.1039/d0nr05640e
  • Yared G. Canal preparation using only one Ni-Ti rotary instrument: preliminary observations. Int Endod J. 2008;41(4):339–344. doi:10.1111/j.1365-2591.2007.01351.x
  • Chen J, Zhao Q, Peng J, Yang X, Yu D, Zhao W. Antibacterial and mechanical properties of reduced graphene-silver nanoparticle nanocomposite modified glass ionomer cements. J Dent. 2020;96:103332. doi:10.1016/j.jdent.2020.103332
  • Paz L. Image analysis software based on color segmentation for characterization of viability and physiological activity of biofilms. Appl Environ Microbiol. 2009;75(6):1734–1739. doi:10.1128/AEM.02000-08
  • Perez JM, Asati A, Nath S, Kaittanis C. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small. 2008;4(5):552–556. doi:10.1002/smll.200700824
  • Liao J, Meng Y, Zhai J, et al. Physicochemical, pharmacologic, and in vitro cellular effects of loading collagen membranes with zoledronic acid. Int J Oral Maxillofac Implants. 2013;28(4):1027–1036. doi:10.11607/jomi.3030
  • Song Q, Jiao K, Tonggu L, et al. Contribution of biomimetic collagen-ligand interaction to intrafibrillar mineralization. Sci Adv. 2019;5(3):eaav9075. doi:10.1126/sciadv.aav9075
  • Teng M, Luo L, Yang X. Synthesis of mesoporous Ce1xZrxO2 (x=0.20.5) and catalytic properties of CuO based catalysts. Micropor Mesopor Mat. 2009;119(1–3):158–164. doi:10.1016/j.micromeso.2008.10.019
  • Chen Y, Lu J. Facile fabrication of porous hollow CeO2 microspheres using polystyrene spheres as templates. J Porous Mat. 2012;19(3):289–294. doi:10.1007/s10934-011-9474-9
  • Wang R, Stanley T, Yao X, Liu H, Wang Y. Collagen stabilization by natural cross-linkers: a qualitative and quantitative FTIR study on ultra-thin dentin collagen model. Dent Mater J. 2022;41(3):440–450. doi:10.4012/dmj.2021-247
  • Akgun OM, Bayari SH, Ide S, Polat GG, Kalkhoran IO. Micro- and nanoscale structures of mesiodens dentin: combined study of FTIR and SAXS/WAXS techniques. Microsc Res Tech. 2015;78(1):52–58. doi:10.1002/jemt.22444
  • Chong BS, Pitt Ford TR. The role of intracanal medication in root canal treatment. Int Endod J. 1992;25(2):97–106. doi:10.1111/j.1365-2591.1992.tb00743.x
  • Prada I, Mico-Munoz P, Giner-Lluesma T, Mico-Martinez P, Collado-Castellano N, Manzano-Saiz A. Influence of microbiology on endodontic failure. Literature review. Med Oral Patol Oral Cir Bucal. 2019;24(3):e364–e372. doi:10.4317/medoral.22907
  • Raura N, Garg A, Arora A, Roma M. Nanoparticle technology and its implications in endodontics: a review. Biomater Res. 2020;24(1):21. doi:10.1186/s40824-020-00198-z
  • Stubbing J, Brown J, Price GJ. Sonochemical production of nanoparticle metal oxides for potential use in dentistry. Ultrason Sonochem. 2017;35(Pt B):646–654. doi:10.1016/j.ultsonch.2016.04.036
  • Louwakul P, Saelo A, Khemaleelakul S. Efficacy of calcium oxide and calcium hydroxide nanoparticles on the elimination of Enterococcus faecalis in human root dentin. Clin Oral Investig. 2017;21(3):865–871. doi:10.1007/s00784-016-1836-x
  • Afkhami F, Nasri S, Valizadeh S. Bacterial leakage assessment in root canals sealed with AH Plus sealer modified with silver nanoparticles. BMC Oral Health. 2021;21(1):577. doi:10.1186/s12903-021-01924-2
  • Brosco VH, Bernardineli N, Torres SA, et al. Bacterial leakage in obturated root canals-part 2: a comparative histologic and microbiologic analyses. Oral Surg, Oral Med Oral Pathol Oral Radiol Endod. 2010;109(5):788–794. doi:10.1016/j.tripleo.2009.11.036
  • Niu LN, Jee SE, Jiao K, et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater. 2017;16(3):370–378. doi:10.1038/nmat4789
  • Wang Z, Ouyang Y, Wu Z, et al. A novel fluorescent adhesive-assisted biomimetic mineralization. Nanoscale. 2018;10(40):18980–18987. doi:10.1039/c8nr02078g
  • Danesi PR. Studies on the Hydrolysis of Metal Ions. Acta Chem Scand. 1967;21(1):10.
  • Mesmer R, Baes C. Review of Hydrolysis Behavior of Ions in Aqueous Solutions. MRS Online Proc Lib. 1990;180:85–96.
  • Nanda HS. Surface modification of promising cerium oxide nanoparticles for nanomedicine applications. RSC Adv. 2016;6(113):111889–111894. doi:10.20944/preprints201608.0112.v1
  • Karakoti A, Monteiro-Riviere N, Aggarwal R, et al. Nanoceria as antioxidant: synthesis and biomedical applications. Jom. 2008;60:33–37. doi:10.1007/s11837-008-0029-8
  • Zhou Y, Liu K, Zhang H. Biomimetic Mineralization: from Microscopic to Macroscopic Materials and Their Biomedical Applications. ACS Appl Bio Mater. 2023. doi:10.1021/acsabm.3c00109
  • Oosterlaken BM, Vena MP, de With G. In vitro mineralization of collagen. Adv Mater. 2021;33(16):2004418. doi:10.1002/adma.202004418
  • Díaz-Montes E. Dextran: sources, structures, and properties. Polysaccharides. 2021;2(3):554–565. doi:10.3390/polysaccharides2030033
  • Ferreira MPA, Talman V, Torrieri G, et al. Dual‐Drug Delivery Using Dextran‐Functionalized Nanoparticles Targeting Cardiac Fibroblasts for Cellular Reprogramming. Adv Funct Mater. 2018;28:1705134. doi:10.1002/adfm.201705134
  • Arcot P, Kim D-S, Pak D, Sim S. Rheology and gelation of water-insoluble dextran from Leuconostoc mesenteroides NRRL B-523. Carbohyd Polym. 2003;53:459–468. doi:10.1016/S0144-8617(03)00140-1
  • Wang Y, Liu J, Shi T, et al. Synthesis, characterization and mechanism of porous spherical nesquehonite by CO2 biomimetic mineralization. Adv Powder Technol. 2022;33(12):103856. doi:10.1016/j.apt.2022.103856
  • Ju X, Šmíd B, Johánek V, et al. Investigation of dextran adsorption on polycrystalline cerium oxide surfaces. Appl Surf Sci. 2020;544:148890. doi:10.1016/j.apsusc.2020.148890
  • Dai L, Douglas EP, Gower LB. Compositional analysis of a polymer-induced liquid-precursor (PILP) amorphous CaCO3 phase. J Non-Cryst Solids. 2008;354(17):1845–1854. doi:10.1016/j.jnoncrysol.2007.10.022
  • Lotsari A, Rajasekharan AK, Halvarsson M, Andersson M. Transformation of amorphous calcium phosphate to bone-like apatite. Nat Commun. 2018;9(1):4170. doi:10.1038/s41467-018-06570-x
  • Perez RA, Ginebra MP. Injectable collagen/α-tricalcium phosphate cement: collagen-mineral phase interactions and cell response. J Mater Sci Mater Med. 2013;24(2):381–393. doi:10.1007/s10856-012-4799-8
  • Nyoka M, Choonara YE, Kumar P, Kondiah PP, Pillay V. Synthesis of cerium oxide nanoparticles using various methods: implications for biomedical applications. Nanomaterials. 2020;10(2):242. doi:10.3390/nano10020242
  • Deshpande S, Patil S, Kuchibhatla SV, Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett. 2005;87(13):133113. doi:10.1063/1.2061873
  • Baalousha M, Le Coustumer P, Jones I, Lead J. Characterisation of structural and surface speciation of representative commercially available cerium oxide nanoparticles. Environ Chem. 2010;7(4):377–385. doi:10.1071/EN10003
  • Kenneth R, Aniruddha K, Alastair C. Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom? Environ Sci-Nano. 2014;1(5):390–405. doi:10.1039/C4EN00079J
  • van der Sluis LW, Wu MK, Wesselink PR. An evaluation of the quality of root fillings in mandibular incisors and maxillary and mandibular canines using different methodologies. J Dent. 2005;33(8):683–688. doi:10.1016/j.jdent.2005.01.007
  • Li C, Lu D, Deng J, Zhang X, Yang P. Amyloid-Like Rapid Surface Modification for Antifouling and In-Depth Remineralization of Dentine Tubules to Treat Dental Hypersensitivity. Adv Mater. 2019;31(46):e1903973. doi:10.1002/adma.201903973
  • Wen Y, Wang J, Luo J, Yang J. Remineralization of dentine tubules induced by phosphate-terminated PAMAM dendrimers. Heliyon. 2020;6(12):e05886. doi:10.1016/j.heliyon.2020.e05886
  • Toledano M, Vallecillo-Rivas M, Aguilera FS, Osorio MT, Osorio E, Osorio R. Polymeric zinc-doped nanoparticles for high performance in restorative dentistry. J Dent. 2021;107:103616. doi:10.1016/j.jdent.2021.103616
  • Melo MA, Cheng L, Weir MD, Hsia RC, Rodrigues LK, Xu HH. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater. 2013;101(4):620–629. doi:10.1002/jbm.b.32864
  • Beveridge TJ, Graham LL. Surface layers of bacteria. Microbiol Rev. 1991;55(4):684–705. doi:10.1128/mr.55.4.684-705.1991
  • Qi M, Li W, Zheng X, Li X, Wang L. Cerium and Its Oxidant-Based Nanomaterials for Antibacterial Applications: a State-of-The-Art Review. Front Mater. 2020;7. doi:10.3389/fmats.2020.00213
  • Predoi D. Investigation of Spin Coating Cerium-Doped Hydroxyapatite Thin Films with Antifungal Properties. Coatings. 2021;11.
  • Li Y, Zhang W, Niu J, Chen Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano. 2012;6(6):5164–5173. doi:10.1021/nn300934k
  • Alpaslan E, Geilich BM, Yazici H, Webster TJ. pH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram-Negative Bacteria Growth. Sci Rep. 2017;7:45859. doi:10.1038/srep45859
  • Wang L, He H, Yu Y, et al. Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. J Inorg Biochem. 2014;135:45–53. doi:10.1016/j.jinorgbio.2014.02.016
  • Arumugam A, Karthikeyan C, Haja Hameed AS, Gopinath K, Gowri S, Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C Mater Biol Appl. 2015;49:408–415. doi:10.1016/j.msec.2015.01.042
  • Tong GX, Du FF, Liang Y, et al. Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. J Mater Chem B. 2013;1(4):454–463. doi:10.1039/c2tb00132b
  • Nadeem M, Khan R, Afridi K, et al. Green Synthesis of Cerium Oxide Nanoparticles (CeO(2) NPs) and Their Antimicrobial Applications: a Review. Int J Nanomed. 2020;15:5951–5961. doi:10.2147/IJN.S255784
  • Barker E, Shepherd J, Asencio IO. The Use of Cerium Compounds as Antimicrobials for Biomedical Applications. Molecules. 2022;27(9):5655.
  • Pelletier DA, Suresh AK, Holton GA, et al. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol. 2010;76(24):7981–7989. doi:10.1128/aem.00650-10
  • Kuang Y, He X, Zhang Z, et al. Comparison study on the antibacterial activity of nano- or bulk-cerium oxide. J Nanosci Nanotechnol. 2011;11(5):4103–4108. doi:10.1166/jnn.2011.3858
  • Wang Z, Tang M. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells. J Appl Toxicol. 2021;41(5):683–700. doi:10.1002/jat.4121
  • Humaira B, Shakir HA, et al. Biosynthesized Cerium Oxide Nanoparticles CeO(2)NPs: recent Progress and Medical Applications. Curr Pharm Biotechnol. 2023;24(6):766–779. doi:10.2174/1389201023666220821161737
  • Ma X, Cheng Y, Jian H, et al. Hollow, Rough, and Nitric Oxide-Releasing Cerium Oxide Nanoparticles for Promoting Multiple Stages of Wound Healing. Adv Healthc Mater. 2019;8(16):e1900256. doi:10.1002/adhm.201900256
  • Vedhanayagam M, Kumar AS, Nair BU, Sreeram KJ. Dendrimer-Functionalized Metal Oxide Nanoparticle-Mediated Self-Assembled Collagen Scaffold for Skin Regenerative Application: function of Metal in Metal Oxides. Appl Biochem Biotechnol. 2022;194(1):266–290. doi:10.1007/s12010-021-03764-w
  • Xie W, Guo Z, Gao F, et al. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics. 2018;8(12):3284–3307. doi:10.7150/thno.25220
  • Cordelli E, Keller J, Eleuteri P, et al. No genotoxicity in rat blood cells upon 3- or 6-month inhalation exposure to CeO2 or BaSO4 nanomaterials. Mutagenesis. 2017;32(1):13–22. doi:10.1093/mutage/gew005
  • Goujon G, Baldim V, Roques C, et al. Antioxidant Activity and Toxicity Study of Cerium Oxide Nanoparticles Stabilized with Innovative Functional Copolymers. Adv Healthc Mater. 2021;10(11):e2100059. doi:10.1002/adhm.202100059
  • Raghunath A, Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents. 2017;49(2):137–152. doi:10.1016/j.ijantimicag.2016.11.011