127
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Nanofabrications of Erythrocyte Membrane-Coated Telmisartan Delivery System Effective for Radiosensitivity of Tumor Cells in Mice Model

, ORCID Icon, , , , & ORCID Icon show all
Pages 1487-1508 | Received 13 Oct 2023, Accepted 30 Jan 2024, Published online: 15 Feb 2024

References

  • Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 2015;12(9):527–540. doi:10.1038/nrclinonc.2015.120
  • Baskar R, Lee KA, Yeo R, et al. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193. doi:10.7150/ijms.3635
  • Levy A, Chargari C, Cheminant M, et al. Radiation therapy and immunotherapy: implications for a combined cancer treatment. Crit Rev Oncol Hematol. 2013;85(3):278–287. doi:10.1016/j.critrevonc.2012.09.001
  • Matei D, Filiaci V, Randall ME, et al. Adjuvant chemotherapy plus radiation for locally advanced endometrial cancer. New Engl J Med. 2019;380(24):2317–2326. doi:10.1056/NEJMoa1813181
  • Sacchini V, Norton L. Escalating de-escalation in breast cancer treatment. Breast Cancer Res Treat. 2022;195(2):85–90. doi:10.1007/s10549-022-06685-2
  • Masterson L, Moualed D, Liu ZW, et al. De-escalation treatment protocols for human papillomavirus-associated oropharyngeal squamous cell carcinoma: a systematic review and meta-analysis of current clinical trials. Eur J Cancer. 2014;50(15):2636–2648. doi:10.1016/j.ejca.2014.07.001
  • Gong L, Zhang Y, Liu C, et al. Application of radiosensitizers in cancer radiotherapy. Int J Nanomed. 2021;16:1083. doi:10.2147/IJN.S290438
  • Goswami N, Luo Z, Yuan X, et al. Engineering gold-based radiosensitizers for cancer radiotherapy. Mater Horiz. 2017;4(5):817–831. doi:10.1039/C7MH00451F
  • Srinivas US, Tan BWQ, Vellayappan BA, et al. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084. doi:10.1016/j.redox.2018.101084
  • Barbara M, Pilar DLP, Feda A, et al. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83–92. doi:10.2147/HP.S93413
  • Horsman MR, Wouters BG, Joiner MC, et al. The oxygen effect and fractionated radiotherapy. Basic Clin Radiobiol. 2009;2009:207–216.
  • Chen L, Zhang Y, Zhang X, et al. A GdW10@ PDA-CAT Sensitizer with high-Z effect and self-supplied oxygen for hypoxic-tumor radiotherapy. Molecules. 2022;27:128. doi:10.3390/molecules27010128
  • Sang W, Xie L, Wang G, et al. Oxygen-enriched metal-phenolic X-ray Nanoprocessor for cancer radio-radiodynamic therapy in combination with checkpoint blockade immunotherapy. Adv Sci. 2021;8:2003338. doi:10.1002/advs.202003338
  • Pei P, Shen W, Zhang Y, et al. Radioactive nano-oxygen generator enhance anti-tumor radio-immunotherapy by regulating tumor microenvironment and reducing proliferation. Biomaterials. 2022;280:121326. doi:10.1016/j.biomaterials.2021.121326
  • Xu S, Xu H, Wang W, et al. The role of collagen in cancer: from bench to bedside. J Transl Med. 2019;17(1):309. doi:10.1186/s12967-019-2058-1
  • Hessmann E, Buchholz SM, Demir IE, et al. Microenvironmental determinants of pancreatic cancer. Physiol Rev. 2020;100(4):1707–1751. doi:10.1152/physrev.00042.2019
  • Harryman WL, Warfel NA, Nagle RB, et al. The tumor microenvironments of lethal prostate cancer. Prostate Cancer. 2019;2019:149–170.
  • Wang Y, Gan G, Wang B, et al. Cancer-associated fibroblasts promote irradiated cancer cell recovery through autophagy. EBioMedicine. 2017;17:45–56. doi:10.1016/j.ebiom.2017.02.019
  • Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14(9):611–622. doi:10.1038/nrc3793
  • Liu Y, Liang X, Yin X, et al. Blockade of IDO-kynurenine-AhR metabolic circuitry abrogates IFN-γ-induced immunologic dormancy of tumor-repopulating cells. Nat Commun. 2017;8(1):1–15. doi:10.1038/s41467-016-0009-6
  • Barrett RL, Puré E. Cancer-associated fibroblasts and their influence on tumor immunity and immunotherapy. Elife. 2020;9:e57243. doi:10.7554/eLife.57243
  • Liao Z, Tan ZW, Zhu P, Tan NS. Cancer-associated fibroblasts in tumor microenvironment-Accomplices in tumor malignancy. Cell Immunol. 2019;343:103729. doi:10.1016/j.cellimm.2017.12.003
  • Hellevik T, Pettersen I, Berg V, et al. Cancer-associated fibroblasts from human NSCLC survive ablative doses of radiation but their invasive capacity is reduced. Radiat Oncol. 2012;7:59. doi:10.1186/1748-717X-7-59
  • Rodier F, Coppé JP, Patil CK, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009;11:973–979. doi:10.1038/ncb1909
  • Tommelein J, De Vlieghere E, Verset L, et al. Radiotherapy-activated cancer-associated fibroblasts promote tumor progression through paracrine IGF1R activation. Cancer Res. 2018;78:659–670. doi:10.1158/0008-5472.CAN-17-0524
  • Hellevik T, Pettersen I, Berg V, et al. Changes in the secretory profile of NSCLC-associated fibroblasts after ablative radiotherapy: potential impact on angiogenesis and tumor growth. Transl Oncol. 2013;6:66–74. doi:10.1593/tlo.12349
  • Pereira PMR, Edwards KJ, Mandleywala K, et al. iNOS regulates the therapeutic response of pancreatic cancer cells to radiotherapy. Cancer Res. 2020;80:1681–1692. doi:10.1158/0008-5472.CAN-19-2991
  • George AJ, Thomas WG, Hannan RD. The renin-angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer. 2010;10:745–59.
  • Mastoor Z, Diz-Chaves Y, González-Matías LC, et al. Renin-angiotensin system in liver metabolism: gender differences and role of incretins. Metabolites. 2022;12(5):411. doi:10.3390/metabo12050411
  • Menikdiwela KR, Ramalingam L, Rasha F, et al. Autophagy in metabolic syndrome: breaking the wheel by targeting the renin-angiotensin system. Cell Death Dis. 2020;11(2):87. doi:10.1038/s41419-020-2275-9
  • De Gasparo M, Catt KJ, Inagami T, et al. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52:415–472.
  • Takiguchi T, Takahashi-Yanaga F, Ishikane S, et al. Angiotensin II promotes primary tumor growth and metastasis formation of murine TNBC 4T1 cells through the fibroblasts around cancer cells. Eur J Pharmacol. 2021;909:174415. doi:10.1016/j.ejphar.2021.174415
  • Chen X, Meng Q, Zhao Y, et al. Angiotensin II type 1 receptor antagonists inhibit cell proliferation and angiogenesis in breastcancer. Cancer Lett. 2013;328:318e324. doi:10.1016/j.canlet.2012.10.006
  • Kim S, Toyokawa H, Yamao J, et al. Antitumor effect of angiotensin II type 1 receptor blocker losartan for orthotopic rat pancreatic adenocarcinoma. Pancreas. 2014;43:886e890. doi:10.1097/MPA.0000000000000125
  • Rhodes DR, Ateeq B, Cao Q. AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proc Natl Acad Sci U S A. 2009;106:10284–10289. doi:10.1073/pnas.0900351106
  • Amaya K, Ohta T, Kitagawa H. Angiotensin II activates MAP kinase and NF-kappaB through angiotensin II type I receptor in human pancreatic cancer cells. Int J Oncol. 2004;25:849–856.
  • Hasan HF, Elgazzar EM, Mostafa DM. Diminazene aceturate extenuate the renal deleterious consequences of angiotensin-II induced by γ-irradiation through boosting ACE2 signaling cascade. Life Sci. 2020;253:117749. doi:10.1016/j.lfs.2020.117749
  • Song L, Wang D, Cui X, et al. Kinetic alterations of angiotensin-II and nitric oxide in radiation pulmonary fibrosis. J Environ Pathol Toxicol Oncol. 1998;17:141.
  • Yin Q, Liu H. Connective tissue growth factor and renal fibrosis. Renal Fibrosis. 2019;2019:365–380.
  • Seo H-Y, Lee S-H, Lee J-H, et al. Src inhibition attenuates liver fibrosis by preventing hepatic stellate cell activation and decreasing connective tissue growth factor. Cells. 2020;9(3):558. doi:10.3390/cells9030558
  • Balakumar P, Jagadeesh G. Structural determinants for binding, activation, and functional selectivity of the angiotensin AT1 receptor. J Mol Endocrinol. 2014;53:R71eR92. doi:10.1530/JME-14-0125
  • Ohno K, Amano Y, Kakuta H, et al. Unique ”delta lock” structure of telmisartan is involved in its strongest binding affinity to angiotensin II type 1 receptor. Biochem Biophys Res Commun. 2011;404:434e437. doi:10.1016/j.bbrc.2010.11.139
  • Zhu Y, Wen L, Shao S, et al. Inhibition of tumor-promoting stroma to enforce subsequently targeting AT1R on tumor cells by pathological inspired micelles. Biomaterials. 2018;161:33–46. doi:10.1016/j.biomaterials.2018.01.023
  • Zhu Y, F. Y, Tan Y, et al. Reversing activity of cancer associated fibroblast for staged glycolipid micelles against internal breast tumor cells. Theranostics. 2019;9(23):6764. doi:10.7150/thno.36334
  • Tsujiya Y, Hasegawa A, Yamamori M, et al. Telmisartan-induced cytotoxicity via G2/M phase arrest in renal cell carcinoma cell lines. Biol Pharm Bull. 2021;44(12):1878–1885. doi:10.1248/bpb.b21-00654
  • Oura K, Tadokoro T, Fujihara S, et al. Telmisartan inhibits hepatocellular carcinoma cell proliferation in vitro by inducing cell cycle arrest. Oncol Rep. 2017;38(5):2825–2835. doi:10.3892/or.2017.5977
  • Parshad R, Gantt R, Sanford KK, et al. Chromosomal radiosensitivity of human tumor cells during the G2 cell cycle period. Cancer Res. 1984;44:5577–5582.
  • Xiong J, M. W, Chen J, et al. Cancer-erythrocyte hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian cancer. ACS Nano. 2021;15:19756–19770. doi:10.1021/acsnano.1c07180
  • Mao Y, Zou C, Jiang Y, et al. Erythrocyte-derived drug delivery systems in cancer therapy. Chinese Chem Lett. 2021;32:990–998. doi:10.1016/j.cclet.2020.08.048
  • Fang RH, C.m.j. H, Luk BT, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014;14(4):2181–2188. doi:10.1021/nl500618u
  • Chen S, Wang C, Tao S, et al. Rational design of redox-responsive and P-gp-inhibitory lipid nanoparticles with high entrapment of paclitaxel for tumor therapy. Adv Healthc Mater. 2018;7:1800485. doi:10.1002/adhm.201800485
  • Chen S, Song Y, Wang C, et al. Chitosan-modified lipid nanodrug delivery system for the targeted and responsive treatment of ulcerative colitis. Carbohyd Polym. 2020;230:115613. doi:10.1016/j.carbpol.2019.115613
  • Ding L, Yao C, Yin X, et al. Size, shape, and protein Corona determine cellular uptake and removal mechanisms of gold nanoparticles. Small. 2018;14(42):1801451. doi:10.1002/smll.201801451
  • Sabourian P, Yazdani G, Ashraf SS, et al. Effect of physico-chemical properties of nanoparticles on their intracellular uptake. Int J Mol Sci. 2020;21(21):8019. doi:10.3390/ijms21218019
  • Lai D, Ma L, Wang F. Fibroblast activation protein regulates tumor-associated fibroblasts and epithelial ovarian cancer cells. Int J Oncol. 2012;41(2):541–550. doi:10.3892/ijo.2012.1475
  • Habashi JP, Judge DP, Holm TM, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312:117–121. doi:10.1126/science.1124287
  • Liu J, Liao S, Diop-Frimpong B, et al. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci. 2012;109:16618. doi:10.1073/pnas.1117610109
  • F. X, Liu C, Zhou D, et al. TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem. 2016;64:157–167. doi:10.1369/0022155415627681
  • Meng X-M, Tang PM-K, Li J, et al. TGF-β/Smad signaling in renal fibrosis. frontiers in Physiology. 2015;6:82. doi:10.3389/fphys.2015.00082
  • Ferrão PM, Nisimura LM, Moreira OC, et al. Inhibition of TGF-β pathway reverts extracellular matrix remodeling in T. cruzi-infected cardiac spheroids. Exp Cell Res. 2018;362:260–267. doi:10.1016/j.yexcr.2017.11.026
  • Shi X, Young CD, Zhou H, et al. Transforming growth factor-β signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules. 2020;10:1666. doi:10.3390/biom10121666
  • Toiyama Y, Inoue Y, Hiro J, et al. The range of optimal concentration and mechanisms of paclitaxel in radio-enhancement in gastrointestinal cancer cell lines. Cancer Chemother Pharmacol. 2007;59(6):733–742. doi:10.1007/s00280-006-0327-1
  • Lee H, Park JH, Jung KH, Lim JH, Hong -S-S. HS-173, a novel PI3K inhibitor enhances radiosensitivity of breast cancer cells. Int J Radiat Res. 2022;20(2):347–352. doi:10.52547/ijrr.20.2.14
  • Tao K, Fang M, Alroy J, et al. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer. 2008;8(1):1–19. doi:10.1186/1471-2407-8-228
  • Rashid OM, Nagahashi M, Ramachandran S, et al. Is tail vein injection a relevant breast cancer lung metastasis model? J Thorac Dis. 2013;5(4):385. doi:10.3978/j.issn.2072-1439.2013.06.17
  • Denkert C, Budczies J, von Minckwitz G, et al. Strategies for developing Ki67 as a useful biomarker in breast cancer. Breast. 2015;24:S67–S72. doi:10.1016/j.breast.2015.07.017