278
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Application of the Peroxidase‒like Activity of Nanomaterials for the Detection of Pathogenic Bacteria and Viruses

ORCID Icon, & ORCID Icon
Pages 441-452 | Received 28 Sep 2023, Accepted 25 Dec 2023, Published online: 15 Jan 2024

References

  • Tropea A. Microbial contamination and public health: an overview. Int J Environ Res Public Health. 2022;19(12):7441. doi:10.3390/ijerph19127441
  • Songca SP. Applications of nanozymology in the detection and identification of viral, bacterial and fungal pathogens. Int J Mol Sci. 2022;23(9):4638. doi:10.3390/ijms23094638
  • Foddai ACG, Grant IR. Methods for detection of viable foodborne pathogens: current state-of-art and future prospects. Appl Microbiol Biotechnol. 2020;104(10):4281–4288. doi:10.1007/s00253-020-10542-x
  • Li D, Liu L, Huang Q, et al. Recent advances on aptamer-based biosensors for detection of pathogenic bacteria. World J Microbiol Biotechnol. 2021;37(3):45. doi:10.1007/s11274-021-03002-9
  • McLaren PJ, Fellay J. HIV-1 and human genetic variation. Nat Rev Genet. 2021;22(10):645–657. doi:10.1038/s41576-021-00378-0
  • Jursch CA, Gerlich WH, Glebe D, Schaefer S, Marie O, Thraenhart O. Molecular approaches to validate disinfectants against human hepatitis B virus. Med Microbiol Immunol. 2002;190(4):189–197. doi:10.1007/s00430-001-0103-0
  • Shigemoto N, Fukuda S, Tanizawa Y, Kuwayama M, Ohara S, Seno M. Detection of norovirus, sapovirus, and human astrovirus in fecal specimens using a multiplex reverse transcription-PCR with fluorescent dye-labeled primers. Microbiol Immunol. 2011;55(5):369–372. doi:10.1111/j.1348-0421.2011.00325.x
  • Zingue D, Weber P, Soltani F, Raoult D, Drancourt M. Automatic microscopic detection of mycobacteria in sputum: a proof-of-concept. Sci Rep. 2018;8(1):11308. doi:10.1038/s41598-018-29660-8
  • Lazcka O, Del Campo FJ, Munoz FX. Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron. 2007;22(7):1205–1217. doi:10.1016/j.bios.2006.06.036
  • Luo C, Li Y, Long J. Recent advances in applications of nanoparticles as enzyme mimetics. Scientia Sinica Chimica. 2015;45(10):1026–1041. doi:10.1360/n032015-00058
  • Luo Q, Shao N, Zhang AC, et al. Smart biomimetic nanozymes for precise molecular imaging: application and challenges. Pharmaceuticals. 2023;16(2):249. doi:10.3390/ph16020249
  • Sun H, Cai S, Wang C, Chen Y, Yang R. Recent progress of nanozymes in the detection of pathogenic microorganisms. Chembiochem. 2020;21(18):2572–2584. doi:10.1002/cbic.202000126
  • Wang H, Li P, Yu D, et al. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano lett. 2018;18(6):3344–3351. doi:10.1021/acs.nanolett.7b05095
  • Zhang L, Wang H, Qu X. Biosystem‐inspired engineering of nanozymes for biomedical applications. Adv Mater. 2023;e2211147. doi:10.1002/adma.202211147
  • van Seventer JM, Hochberg NS. Principles of infectious diseases: transmission, diagnosis, prevention, and control. Int Encycl of Public Health. 2017;22–39. doi:10.1016/b978-0-12-803678-5.00516-6
  • Puligundla P, Lim S. Biocontrol approaches against Escherichia coli O157:H7 in foods. Foods. 2022;11(5):756. doi:10.3390/foods11050756
  • Su H, Zhao H, Qiao F, Chen L, Duan R, Ai S. Colorimetric detection of Escherichia coli O157:H7 using functionalized Au@Pt nanoparticles as peroxidase mimetics. Analyst. 2013;138(10):3026–3031. doi:10.1039/c3an00026e
  • Han J, Zhang L, Hu L, et al. Nanozyme-based lateral flow assay for the sensitive detection of Escherichia coli O157:H7 in milk. J Dairy Sci. 2018;101(7):5770–5779. doi:10.3168/jds.2018-14429
  • Wang Y, Bu T, Cao Y, et al. A versatile pdru bimetallic nanoenzyme-integrated enzyme-linked immunosorbent assay for highly sensitive Escherichia coli O157:H7 detection. Anal Chem. 2023;95(24):9237–9243. doi:10.1021/acs.analchem.3c00743
  • Cheng N, Zhu C, Wang Y, et al. Nanozyme enhanced colorimetric immunoassay for naked-eye detection of Salmonella enteritidis. J Anal Test. 2018;3(1):99–106. doi:10.1007/s41664-018-0079-z
  • Liu Y, Wang J, Song X, et al. Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles. Mikrochim Acta. 2018;185(8):360. doi:10.1007/s00604-018-2896-1
  • Xue L, Jin N, Guo R, et al. Microfluidic colorimetric biosensors based on MnO2 nanozymes and convergence-divergence spiral micromixers for rapid and sensitive detection of Salmonella. ACS Sens. 2021;6(8):2883–2892. doi:10.1021/acssensors.1c00292
  • Chattopadhyay S, Dey SK, Maiti PK, Dolai D. A novel tool for capture and detection of typhoid fever using Ag-labeled nanocomposites. J Biol Inorg Chem. 2014;19(8):1377–1384. doi:10.1007/s00775-014-1199-1
  • Das R, Dhiman A, Kapil A, Bansal V, Sharma TK. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal Bioanal Chem. 2019;411(6):1229–1238. doi:10.1007/s00216-018-1555-z
  • Zhang L, Chen Y, Cheng N, et al. Ultrasensitive detection of viable Enterobacter sakazakii by a continual cascade nanozyme biosensor. Anal Chem. 2017;89(19):10194–10200. doi:10.1021/acs.analchem.7b01266
  • Savas S, Altintas Z. Graphene quantum dots as nanozymes for electrochemical sensing of Yersinia enterocolitica in milk and human serum. Materials (Basel). 2019;12(13):2181. doi:10.3390/ma12132189
  • Li C, Liu C, Liu R, et al. A novel CRISPR/Cas14a-based electrochemical biosensor for ultrasensitive detection of Burkholderia pseudomallei with PtPd@PCN-224 nanoenzymes for signal amplification. Biosens Bioelectron. 2023;225:115098. doi:10.1016/j.bios.2023.115098
  • Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12(1):547–569. doi:10.1080/21505594.2021.1878688
  • Li D, Fang Y, Zhang X. Bacterial detection and elimination using a dual-functional porphyrin-based porous organic polymer with peroxidase-like and high near-infrared-light-enhanced antibacterial activity. ACS Appl Mater Interfaces. 2020;12(8):8989–8999. doi:10.1021/acsami.9b20102
  • Yao S, Li J, Pang B, et al. Colorimetric immunoassay for rapid detection of Staphylococcus aureus based on etching-enhanced peroxidase-like catalytic activity of gold nanoparticles. Mikrochim Acta. 2020;187(9):504. doi:10.1007/s00604-020-04473-7
  • Liu P, Wang Y, Han L, et al. Colorimetric assay of bacterial pathogens based on Co3O4 magnetic nanozymes conjugated with specific fusion phage proteins and magnetophoretic chromatography. ACS Appl Mater Interfaces. 2020;12(8):9090–9097. doi:10.1021/acsami.9b23101
  • Fan Y, Cui M, Liu Y, Jin M, Zhao H. Selection and characterization of DNA aptamers for constructing colorimetric biosensor for detection of PBP2a. Spectrochim, Acta A Mol, Biomol, Spectrosc. 2020;228:117735. doi:10.1016/j.saa.2019.117735
  • Zhang L, Qi Z, Zou Y, et al. Engineering DNA-nanozyme interfaces for rapid detection of dental bacteria. ACS Appl Mater Interfaces. 2019;11(34):30640–30647. doi:10.1021/acsami.9b10718
  • Brasier AR. Special Issue “Next-generation technologies to understand mechanisms of virus infections”. Viruses. 2022;15(1):33. doi:10.3390/v15010033
  • Attwood SW, Hill SC, Aanensen DM, Connor TR, Pybus OG. Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic. Nat Rev Genet. 2022;23(9):547–562. doi:10.1038/s41576-022-00483-8
  • Meng X, Zou S, Li D, et al. Nanozyme-strip for rapid and ultrasensitive nucleic acid detection of SARS-CoV-2. Biosens Bioelectron. 2022;217:114739. doi:10.1016/j.bios.2022.114739
  • Liu D, Ju C, Han C, et al. Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen. Biosens Bioelectron. 2020;173:112817. doi:10.1016/j.bios.2020.112817
  • Zhao X, Yang Z, Niu R, et al. MIL-101(CuFe) Nanozymes with excellent peroxidase-like activity for simple, accurate, and visual naked-eye detection of SARS-CoV-2. Anal Chem. 2023;95(2):1731–1738. doi:10.1021/acs.analchem.2c05043
  • Lin X, Liu Y, Tao Z, et al. Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs. Biosens Bioelectron. 2017;94:471–477. doi:10.1016/j.bios.2017.01.008
  • Khoshfetrat SM, Fasihi K, Moradnia F, Kamil Zaidan H, Sanchooli E. A label-free multicolor colorimetric and fluorescence dual mode biosensing of HIV-1 DNA based on the bifunctional NiFe2O4@UiO-66 nanozyme. Anal Chim Acta. 2023;1252:341073. doi:10.1016/j.aca.2023.341073
  • Bettini A, Lapa D, Garbuglia AR. Diagnostics of Ebola virus. Front Public Health. 2023;11:1123024. doi:10.3389/fpubh.2023.1123024
  • Duan D, Fan K, Zhang D, et al. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron. 2015;74:134–141. doi:10.1016/j.bios.2015.05.025
  • Becker T, Elbahesh H, Reperant LA, Rimmelzwaan GF, Osterhaus A. Influenza vaccines: successes and continuing challenges. J Infect Dis. 2021;224(S4):S405–S419. doi:10.1093/infdis/jiab269
  • Ahmed SR, Corredor JC, É N, Neethirajan S. Amplified visual immunosensor integrated with nanozyme for ultrasensitive detection of avian influenza virus. Nanotheranostics. 2017;1(3):338–345. doi:10.7150/ntno.20758
  • Oh S, Kim J, Tran VT, et al. Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza a virus detection. ACS Appl Mater Interfaces. 2018;10(15):12534–12543. doi:10.1021/acsami.8b02735
  • Weerathunge TV. Ultrasensitive colorimetric detection of murine norovirus using nanozyme aptasensor. Anal Chem. 2019;91(5):3270–3276.
  • Hsu YP, Li NS, Chen YT, Pang HH, Wei KC, Yang HW. A serological point-of-care test for Zika virus detection and infection surveillance using an enzyme-free vial immunosensor with a smartphone. Biosens Bioelectron. 2020;151:111960. doi:10.1016/j.bios.2019.111960
  • Li A, Long L, Liu F, Liu J, Wu X, Ji Y. Antigen-labeled mesoporous silica-coated Au-core Pt-shell nanostructure: a novel nanoprobe for highly efficient virus diagnosis. J Biol Eng. 2019;13:87. doi:10.1186/s13036-019-0220-1
  • Long L, Liu J, Lu K, et al. Highly sensitive and robust peroxidase-like activity of Au-Pt core/shell nanorod-antigen conjugates for measles virus diagnosis. J Nanobiotechnology. 2018;16(1):46. doi:10.1186/s12951-018-0371-0
  • Long L, Cai R, Liu J, Wu X. A novel nanoprobe based on core-shell Au@Pt@Mesoporous SiO2 nanozyme with enhanced activity and stability for mumps virus diagnosis. Front Chem. 2020;8:463. doi:10.3389/fchem.2020.00463
  • Zhan WWB. A colorimetric immunoassay for respiratory syncytial virus detection based on gold nanoparticles–graphene oxide hybrids with mercury-enhanced peroxidase-like activity. Chem Commun. 2014;50(78):11526–11528. doi:10.1039/c4cc05155f
  • Khoris IM, Chowdhury AD, Li TC, Suzuki T, Park EY. Advancement of capture immunoassay for real-time monitoring of hepatitis E virus-infected monkey. Anal Chim Acta. 2020;1110:64–71. doi:10.1016/j.aca.2020.02.020
  • Wu L, Zhang M, Zhu L, Li J, Li Z, Xie W. Nanozyme-linked immunosorbent assay for porcine circovirus type 2 antibody using HAuCl4/H2O2 coloring system. Microchem J. 2020;157:105079. doi:10.1016/j.microc.2020.105079
  • Li Y, Wang Y, Luo C. Enhancement strategies for peroxidase-like activities of nanomaterials. Chin J Biochem Mol Biol. 2021;37(07):847–855. doi:10.13865/j.cnki.cjbmb.2020.11.1472