118
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

IL-12-Overexpressed Nanoparticles Suppress the Proliferation of Melanoma Through Inducing ICD and Activating DC, CD8+ T, and CD4+ T Cells

, , , ORCID Icon, , , , , , , & ORCID Icon show all
Pages 2755-2772 | Received 28 Sep 2023, Accepted 05 Mar 2024, Published online: 18 Mar 2024

References

  • Anselmo AC, Mitragotri S. A Review of Clinical Translation of Inorganic Nanoparticles. AAPS J. 2015;17(5):1041–1054. doi:10.1208/s12248-015-9780-2
  • Park DJ, Min KH, Lee HJ, et al. Photosensitizer-loaded bubble-generating mineralized nanoparticles for ultrasound imaging and photodynamic therapy. J Mater Chem B. 2016;4(7):1219–1227. doi:10.1039/c5tb02338f
  • Zhu Y, Yang Z, Dong Z, et al. CaCO(3)-Assisted Preparation of pH-Responsive Immune-Modulating Nanoparticles for Augmented Chemo-Immunotherapy. Nanomicro Lett. 2020;13(1):29. doi:10.1007/s40820-020-00549-4
  • Roth R, Schoelkopf J, Huwyler J, Puchkov M. Functionalized calcium carbonate microparticles for the delivery of proteins. Eur J Pharm Biopharm. 2018;122:96–103. doi:10.1016/j.ejpb.2017.10.012
  • Li H, Zhang X, Lin X, et al. CaCO3 nanoparticles pH-sensitively induce blood coagulation as a potential strategy for starving tumor therapy. J Mat Chem B. 2020;8(6):1223–1234. doi:10.1039/c9tb02684c
  • Guan X, Guo Z, Wang T. A pH-Responsive Detachable PEG Shielding Strategy for Gene Delivery System in Cancer Therapy. Biomacromolecules. 2017;18(4):1342–1349. doi:10.1021/acs.biomac.7b00080
  • Lv P, Zhou C, Zhao Y, Liao X, Yang B. Modified-epsilon-polylysine-grafted-PEI-β-cyclodextrin supramolecular carrier for gene delivery. Carbohydr. Polym. 2017;168:103–111. doi:10.1016/j.carbpol.2017.02.036
  • Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev. 2019;48(7):2053–2108. doi:10.1039/c8cs00618k
  • Ye L, Chen Y, Mao J, Lei X, Yang Q, Cui C. Dendrimer-modified gold nanorods as a platform for combinational gene therapy and photothermal therapy of tumors. J Exp Clin Cancer Res. 2021;40(1):303. doi:10.1186/s13046-021-02105-3
  • Cai Z, Xin F, Wei Z, et al. Photodynamic Therapy Combined with Antihypoxic Signaling and CpG Adjuvant as an In Situ Tumor Vaccine Based on Metal-Organic Framework Nanoparticles to Boost Cancer Immunotherapy. Adv Healthc Mater. 2020;9(1):e1900996. doi:10.1002/adhm.201900996
  • Ye X, Liang X, Chen Q, et al. Surgical Tumor-Derived Personalized Photothermal Vaccine Formulation for Cancer Immunotherapy. ACS Nano. 2019;13(3):2956–2968. doi:10.1021/acsnano.8b07371
  • Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Dopamine‐Melanin Colloidal Nanospheres: an Efficient Near‐Infrared Photothermal Therapeutic Agent for In Vivo Cancer Therapy. Adv. Mater. 2012;25(9):1353–1359. doi:10.1002/adma.201204683
  • Chen Y, Ai K, Liu J, Ren X, Jiang C, Lu L. Polydopamine-based coordination nanocomplex for T1/T2 dual mode magnetic resonance imaging-guided chemo-photothermal synergistic therapy. Biomaterials. 2016;77:198–206. doi:10.1016/j.biomaterials.2015.11.010
  • Ge R, Li X, Lin M, et al. Correction to Fe3O4@polydopamine Composite Theranostic Superparticles Employing Preassembled Fe3O4 Nanoparticles as the Core. ACS Appl. Mater. Interfaces. 2021;13(15):18389–18390. doi:10.1021/acsami.1c04988
  • Wang H, Mooney DJ. Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nat Mater. 2018;17(9):761–772. doi:10.1038/s41563-018-0147-9
  • Qiu N, Wang G, Wang J, et al. Tumor-Associated Macrophage and Tumor-Cell Dually Transfecting Polyplexes for Efficient Interleukin-12 Cancer Gene Therapy. Adv Mater. 2021;33(2):e2006189. doi:10.1002/adma.202006189
  • Tugues S, Burkhard SH, Ohs I, et al. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 2015;22(2):237–246. doi:10.1038/cdd.2014.134
  • Etxeberria I, Bolanos E, Quetglas JI, et al. Intratumor Adoptive Transfer of IL-12 mRNA Transiently Engineered Antitumor CD8(+) T Cells. Cancer Cell. 2019;36(6):613–629 e7. doi:10.1016/j.ccell.2019.10.006
  • Agliardi G, Liuzzi AR, Hotblack A, et al. Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nat Commun. 2021;12(1):444. doi:10.1038/s41467-020-20599-x
  • Algazi AP, Twitty CG, Tsai KK, et al. Phase II Trial of IL-12 Plasmid Transfection and PD-1 Blockade in Immunologically Quiescent Melanoma. Clin Cancer Res. 2020;26(12):2827–2837. doi:10.1158/1078-0432.CCR-19-2217
  • Yu L, Hu P, Chen Y. Gas-Generating Nanoplatforms: material Chemistry, Multifunctionality, and Gas Therapy. Adv Mater. 2018;30(49):e1801964. doi:10.1002/adma.201801964
  • Li B, Gong T, Xu N, et al. Improved Stability and Photothermal Performance of Polydopamine-Modified Fe(3) O(4) Nanocomposites for Highly Efficient Magnetic Resonance Imaging-Guided Photothermal Therapy. Small. 2020;16(45):e2003969. doi:10.1002/smll.202003969
  • Zheng P, Ding B, Jiang Z, et al. Ultrasound-Augmented Mitochondrial Calcium Ion Overload by Calcium Nanomodulator to Induce Immunogenic Cell Death. Nano Lett. 2021;21(5):2088–2093. doi:10.1021/acs.nanolett.0c04778
  • Zhang Q, Yan YF, Lv Q, et al. miR-4293 upregulates lncRNA WFDC21P by suppressing mRNA-decapping enzyme 2 to promote lung carcinoma proliferation. Cell Death Dis. 2021;12(8):735. doi:10.1038/s41419-021-04021-y
  • Hao R, Hu J, Liu Y, et al. RFWD2 Knockdown as a Blocker to Reverse the Oncogenic Role of TRIB2 in Lung Adenocarcinoma. Front Oncol. 2021;11:733175. doi:10.3389/fonc.2021.733175
  • Maleki Dizaj S, Sharifi S, Ahmadian E, Eftekhari A, Adibkia K, Lotfipour F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin Drug Deliv. 2019;16(4):331–345. doi:10.1080/17425247.2019.1587408
  • Wang W, Tang Z, Zhang Y, Wang Q, Liang Z, Zeng X. Mussel-Inspired Polydopamine: the Bridge for Targeting Drug Delivery System and Synergistic Cancer Treatment. Macromol Biosci. 2020;20(10):e2000222. doi:10.1002/mabi.202000222
  • Glass SB, Gonzalez-Fajardo L, Beringhs AO, Lu X. Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy. Antioxid Redox Signal. 2019;30(5):747–761. doi:10.1089/ars.2017.7370
  • Kuan CY, Lin YY, Yang IH, et al. The Synthesis of Europium-Doped Calcium Carbonate by an Eco-Method as Free Radical Generator Under Low-Intensity Ultrasonic Irradiation for Body Sculpture. Front Bioeng Biotechnol. 2021;9:765630. doi:10.3389/fbioe.2021.765630
  • Zaharoff DA, Hance KW, Rogers CJ, Schlom J, Greiner JW. Intratumoral immunotherapy of established solid tumors with chitosan/IL-12. J Immunother. 2010;33(7):697–705. doi:10.1097/CJI.0b013e3181eb826d
  • Duan X, Chan C, Lin W. Nanoparticle-Mediated Immunogenic Cell Death Enables and Potentiates Cancer Immunotherapy. Angew Chem Int Ed Engl. 2019;58(3):670–680. doi:10.1002/anie.201804882
  • Fucikova J, Kepp O, Kasikova L, et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020;11(11):1013. doi:10.1038/s41419-020-03221-2
  • Lamberti MJ, Nigro A, Mentucci FM, Rumie Vittar NB, Casolaro V, Dal Col J. Dendritic Cells and Immunogenic Cancer Cell Death: a Combination for Improving Antitumor Immunity. Pharmaceutics. 2020;12(3):56.
  • Xiao Z, Kandel A, Li L. Synergistic Activation of Bovine CD4+ T Cells by Neutrophils and IL-12. Pathogens. 2021;10(6).
  • Salem ML, Salman S, Barnawi IO. Brief in vitro IL-12 conditioning of CD8 (+)T Cells for anticancer adoptive T cell therapy. Cancer Immunol Immunother. 2021;70(10):2751–2759. doi:10.1007/s00262-021-02887-7
  • Tan S, Li D, Zhu X. Cancer immunotherapy: pros, cons and beyond. Biomed Pharmacother. 2020;124:109821. doi:10.1016/j.biopha.2020.109821
  • Guo X, Gao C, Yang D-H, Li S. Exosomal circular RNAs: a chief culprit in cancer chemotherapy resistance. Drug Resist Updates. 2023;67. doi:10.1016/j.drup.2023.100937
  • Han S, Shuen WH, Wang WW, Nazim E, Toh HC. Tailoring precision immunotherapy: coming to a clinic soon? ESMO Open. 2020;5 Suppl 1(Suppl 1):e000631. doi:10.1136/esmoopen-2019-000631
  • Zhu X, Li S. Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol Cancer. 2023;22(1):1342–1349. doi:10.1186/s12943-023-01797-9
  • Chen Z, Yue Z, Yang K, et al. Four Ounces Can Move a Thousand Pounds: the Enormous Value of Nanomaterials in Tumor Immunotherapy. Adv. Healthcare Mater. 2023;12(26).
  • Maklad A, Sharma A, Azimi I. Calcium Signaling in Brain Cancers: roles and Therapeutic Targeting. Cancers. 2019;11(2):564.
  • Takemoto-Kimura S, Suzuki K, Horigane SI, et al. Calmodulin kinases: essential regulators in health and disease. J Neurochem. 2017;141(6):808–818. doi:10.1111/jnc.14020
  • Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nature Nanotechnol. 2020;15(4):313–320. doi:10.1038/s41565-020-0669-6
  • Alkhathami AG, Sahib AS, Al Fayi MS, et al. Glycolysis in human cancers: emphasis circRNA/glycolysis axis and nanoparticles in glycolysis regulation in cancer therapy. Environ. Res. 2023:234. doi:10.1016/j.envres.2023.116007
  • Li Y, Su Z, Zhao W, et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat Cancer. 2020;1(9):882–893. doi:10.1038/s43018-020-0095-6
  • Xu M, Li S. Nano-drug delivery system targeting tumor microenvironment: a prospective strategy for melanoma treatment. Cancer Lett. 2023;574. doi:10.1016/j.canlet.2023.216397