336
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

How Precise are Nanomedicines in Overcoming the Blood–Brain Barrier? A Comprehensive Review of the Literature

, , & ORCID Icon
Pages 2441-2467 | Received 20 Oct 2023, Accepted 21 Dec 2023, Published online: 11 Mar 2024

References

  • Nguyen TT, Dung Nguyen TT, Vo TK, et al. Nanotechnology-based drug delivery for central nervous system disorders. Biomed Pharmacother. 2021;143:112117. doi:10.1016/j.biopha.2021.112117
  • Mehndiratta MM, Aggarwal V. Neurological disorders in India: past, present, and next steps. Lancet Glob Health. 2021;9(8):e1043–e1044. doi:10.1016/S2214-109X(21)00214-X
  • Upadhya M, Jimmy N, Jaison JM, et al. Drug utilization evaluation of medications used in the management of neurological disorders. Global Health J. 2023. doi:10.1016/j.glohj.2023.07.006
  • Van Giau V, An SSA, Bagyinszky E, Kim S. Gene panels and primers for next generation sequencing studies on neurodegenerative disorders. Mol Cell Toxicol. 2015;11(2):89–143. doi:10.1007/s13273-015-0011-9
  • Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Maturitas. 2012;73(1):45–51. doi:10.1016/j.maturitas.2011.12.015
  • Bioscience biotechnology research communications. Emerging applications of nanotechnology in neurological disorders: recent review. Available from: https://bbrc.in/emerging-applications-of-nanotechnology-in-neurological-disorders-recent-meta-review/. Accessed August 4, 2023.
  • Chhabra R, Tosi G, Grabrucker AM. Emerging use of nanotechnology in the treatment of neurological disorders. Curr Pharm Des. 2015;21(22):3111–3130. doi:10.2174/1381612821666150531164124
  • Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotechnol Biol Med. 2012;8(2):147–166. doi:10.1016/j.nano.2011.05.016
  • Kabanov AV, Batrakova EV. New technologies for drug delivery across the blood brain barrier. Curr Pharm Des. 2004;10(12):1355–1363.
  • Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the promise of gene therapy with nanomedicines in treating central nervous system diseases. Adv Sci 2022;9(26):2201740. doi:10.1002/advs.202201740
  • Mohapatra P, Chandrasekaran N. Wnt/β-catenin targeting in liver carcinoma through nanotechnology-based drug repurposing: a review. Biomed Pharmacother. 2022;155:113713. doi:10.1016/j.biopha.2022.113713
  • Nehra M, Uthappa UT, Kumar V, et al. Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner. J Control Release. 2021;338:224–243. doi:10.1016/j.jconrel.2021.08.027
  • Liu Z, Jiang W, Nam J, Moon JJ, Kim BYS. Immunomodulating nanomedicine for cancer therapy. Nano Lett. 2018;18(11):6655–6659. doi:10.1021/acs.nanolett.8b02340
  • Safary A, Akbarzadeh Khiavi M, Mousavi R, Barar J, Rafi MA. Enzyme replacement therapies: what is the best option? Bioimpacts. 2018;8(3):153–157. doi:10.15171/bi.2018.17
  • Muro S. New biotechnological and nanomedicine strategies for treatment of lysosomal storage disorders. WIREs Nanomed Nanobiotechnol. 2010;2(2):189–204. doi:10.1002/wnan.73
  • Grosso AD, Galliani M, Angella L, et al. Brain-targeted enzyme-loaded nanoparticles: a breach through the blood-brain barrier for enzyme replacement therapy in Krabbe disease. Sci Adv. 2019. doi:10.1126/sciadv.aax7462
  • Sun C, Ding Y, Zhou L, et al. Noninvasive nanoparticle strategies for brain tumor targeting. Nanomed Nanotechnol Biol Med. 2017;13(8):2605–2621. doi:10.1016/j.nano.2017.07.009
  • Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx. 2005;2(1):108–119. doi:10.1602/neurorx.2.1.108
  • Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64–70. doi:10.1016/j.jsps.2017.10.012
  • Iqubal A, Iqubal MK, Khan A, Ali J, Baboota S, Haque SE. Gene therapy, A novel therapeutic tool for neurological disorders: current progress, challenges and future prospective. Curr Gene Ther. 2020;20(3):184–194. doi:10.2174/1566523220999200716111502
  • Sundarrajan S, Venkatesan A, Kumar SU, et al. Exome sequence analysis of rare frequency variants in Late-Onset Alzheimer Disease. Metab Brain Dis. 2023;38(6):2025–2036. doi:10.1007/s11011-023-01221-7
  • Cao Y, Zhang R. The application of nanotechnology in treatment of Alzheimer’s disease. Frontiers in Bioengineering and Biotechnology; 2022. Available from: https://www.frontiersin.org/articles/10.3389/fbioe.2022.1042986. Accessed August 13, 2023.
  • Sood S, Jain K, Gowthamarajan K. Intranasal therapeutic strategies for management of Alzheimer’s disease. J Drug Target. 2014;22(4):279–294. doi:10.3109/1061186X.2013.876644
  • Sabbagh MN. Alzheimer’s Disease drug development pipeline 2020. J Prev Alzheimers Dis. 2020;7(2):66–67. doi:10.14283/jpad.2020.12
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–1037. doi:10.1016/S1734-1140(12)70901-5
  • Lamptey RNL, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics. Int J Mol Sci. 2022;23(3):1851. doi:10.3390/ijms23031851
  • Spires-Jones TL, Attems J, Thal DR. Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol. 2017;134(2):187–205. doi:10.1007/s00401-017-1709-7
  • Schulz-Schaeffer W. The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol. 2010;120:131–143. doi:10.1007/s00401-010-0711-0
  • Mavridis IN, Meliou M, Pyrgelis ES, Agapiou E. Chapter 1 - Nanotechnology and Parkinson’s disease. In: Grumezescu AM, editor. Design of Nanostructures for Versatile Therapeutic Applications. William Andrew Publishing. 2018:1–29. doi:10.1016/B978-0-12-813667-6.00001-2
  • Ganesan P, Ko HM, Kim IS, Choi DK. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models. Int J Nanomed. 2015;10:6757–6772. doi:10.2147/IJN.S93918
  • Dong X, Gao J, Su Y, Wang Z. Nanomedicine for Ischemic Stroke. Int J Mol Sci. 2020;21(20):7600. doi:10.3390/ijms21207600
  • Fornage M Grand challenges in stroke genomics. Frontiers in Stroke; 2022. Available from: https://www.frontiersin.org/articles/10.3389/fstro.2022.984176. Accessed August 13, 2023.
  • Tsivgoulis G, Katsanos AH, Alexandrov AV. Reperfusion therapies of acute ischemic stroke: potentials and failures. Front Neurol. 2014;5:215. doi:10.3389/fneur.2014.00215
  • Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-Oncology. 2019;21(Supplement_5):v1–v100. doi:10.1093/neuonc/noz150
  • Khaddour K, Johanns TM, Ansstas G. The Landscape of Novel therapeutics and challenges in glioblastoma multiforme: contemporary state and future directions. Pharmaceuticals. 2020;13(11):389. doi:10.3390/ph13110389
  • Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev. 2020;13(3):223–245. doi:10.1080/17518253.2020.1802517
  • Kelley SO, Mirkin CA, Walt DR, Ismagilov RF, Toner M, Sargent EH. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. Nature Nanotech. 2014;9(12):969–980. doi:10.1038/nnano.2014.261
  • Zhang TT, Li W, Meng G, Wang P, Liao W. Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci 2016;4(2):219–229. doi:10.1039/C5BM00383K
  • Prabhakar P, Ahmed ABA, Chidambaram SB. the role of phloridzin and its possible potential therapeutic effect on Parkinson’s disease. Int J Nutr Pharmacol Neurol Dis. 2020;10(2):69. doi:10.4103/ijnpnd.ijnpnd_80_19
  • Varallyay CG, Nesbit E, Fu R, et al. High-resolution steady-state cerebral blood volume maps in patients with central nervous system neoplasms using ferumoxytol, a superparamagnetic iron oxide nanoparticle. J Cereb Blood Flow Metab. 2013;33(5):780–786. doi:10.1038/jcbfm.2013.36
  • Gambaryan PY, Kondrasheva IG, Severin ES, Guseva AA, Kamensky AA. Increasing the efficiency of parkinson’s disease treatment using a poly(lactic-co-glycolic acid) (PLGA) Based L-DOPA delivery system. Exp Neurobiol. 2014;23(3):246–252. doi:10.5607/en.2014.23.3.246
  • Feng Y, Panwar N, Tng DJH, Tjin SC, Wang K, Yong KT. The application of mesoporous silica nanoparticle family in cancer theranostics. Coord Chem Rev. 2016;319:86–109. doi:10.1016/j.ccr.2016.04.019
  • Lux F, Tran VL, Thomas E, et al. AGuIX® from bench to bedside—Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. BJR. 2019;92(1093):20180365. doi:10.1259/bjr.20180365
  • Gilert A, Machluf M. Nano to micro delivery systems: targeting angiogenesis in brain tumors. Vasc Cell. 2010;2(1):20. doi:10.1186/2040-2384-2-20
  • Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Delivery Rev. 2012;64(7):614–628. doi:10.1016/j.addr.2011.11.002
  • Cui Z, Lockman PR, Atwood CS, et al. Novel d-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm. 2005;59(2):263–272. doi:10.1016/j.ejpb.2004.07.009
  • Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res. 2008;1200:159–168. doi:10.1016/j.brainres.2008.01.039
  • Jayant RD, Sosa D, Kaushik A, et al. Current status of non-viral gene therapy for CNS disorders. Expert Opin Drug Delivery. 2016;13(10):1433–1445. doi:10.1080/17425247.2016.1188802
  • Wei QY, Xu YM, Lau ATY. Recent progress of nanocarrier-based therapy for solid malignancies. Cancers. 2020;12(10):2783. doi:10.3390/cancers12102783
  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Delivery Rev. 2016;99:28–51. doi:10.1016/j.addr.2015.09.012
  • Chopade P, Chopade N, Zhao Z, Mitragotri S, Liao R, Chandran Suja V. Alzheimer’s and Parkinson’s disease therapies in the clinic. Bioeng Transl Med. 2023;8(1):e10367. doi:10.1002/btm2.10367
  • Mirón-Barroso S, Domènech EB, Trigueros S. Nanotechnology-based strategies to overcome current barriers in gene delivery. Int J Mol Sci. 2021;22(16):8537. doi:10.3390/ijms22168537
  • Farooque F, Wasi M, Mughees MM. Liposomes as drug delivery system: an updated review. J Drug Delivery Ther. 2021;11(5–S):149–158. doi:10.22270/jddt.v11i5-S.5063
  • Lopez-Barbosa N, Garcia JG, Cifuentes J, et al. Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer’s. Drug Deliv. 2020;27(1):864–875. doi:10.1080/10717544.2020.1775724
  • Arora S, Layek B, Singh J. Design and validation of liposomal ApoE2 gene delivery system to evade blood-brain barrier for effective treatment of Alzheimer’s disease. Mol Pharmaceut. 2020. doi:10.1021/acs.molpharmaceut.0c00461
  • Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci. 2010;35(7):837–867. doi:10.1016/j.progpolymsci.2010.03.002
  • Kurawattimath V, Wilson B, Geetha KM. Nanoparticle-based drug delivery across the blood-brain barrier for treating malignant brain glioma. OpenNano. 2023;10:100128. doi:10.1016/j.onano.2023.100128
  • Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro-Oncology. 2015;17(suppl_2):ii3–ii8. doi:10.1093/neuonc/nou354
  • Pawar S, Koneru T, McCord E, Tatiparti K, Sau S, Iyer AK. LDL receptors and their role in targeted therapy for glioma: a review. Drug Discovery Today. 2021;26(5):1212–1225. doi:10.1016/j.drudis.2021.02.008
  • Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials. 2020;10(7):1403. doi:10.3390/nano10071403
  • Locatelli E, Comes Franchini M. Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res. 2012;14(12):1316. doi:10.1007/s11051-012-1316-4
  • Fan S, Zheng Y, Liu X, et al. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Delivery. 2018;25(1):1091–1102. doi:10.1080/10717544.2018.1461955
  • Carradori D, Balducci C, Re F, et al. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomed Nanotechnol Biol Med. 2018;14(2):609–618. doi:10.1016/j.nano.2017.12.006
  • Brambilla D, Le Droumaguet B, Nicolas J, et al. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomed Nanotechnol Biol Med. 2011;7(5):521–540. doi:10.1016/j.nano.2011.03.008
  • Bozdağ Pehlivan S. Nanotechnology-based drug delivery systems for targeting, imaging and diagnosis of neurodegenerative diseases. Pharm Res. 2013;30(10):2499–2511. doi:10.1007/s11095-013-1156-7
  • Krol S, Macrez R, Docagne F, et al. Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem Rev. 2013;113(3):1877–1903. doi:10.1021/cr200472g
  • Kaur J, Gulati M, Kapoor B, et al. Advances in designing of polymeric micelles for biomedical application in brain related diseases. Chem Biol Interact. 2022;361:109960. doi:10.1016/j.cbi.2022.109960
  • Aguzzi A, Lakkaraju AKK, Frontzek K. Toward therapy of human prion diseases. Annu Rev Pharmacol Toxicol. 2018;58(1):331–351. doi:10.1146/annurev-pharmtox-010617-052745
  • Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials. 2020;13(1):65. doi:10.3390/ma13010065
  • Lee CC, MacKay JA, Fréchet JMJ, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23(12):1517–1526. doi:10.1038/nbt1171
  • Zhu W, Castro NJ, Shen YL, Zhang LG. Chapter 16 - Nanotechnology and 3D/4D Bioprinting for Neural Tissue Regeneration. In: Zhang LG, Fisher JP, Leong KW, editors. 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine. 2nd ed. Academic Press; 2022:427–458. doi:10.1016/B978-0-12-824552-1.00005-0
  • Lu Y, Rivera-Rodriguez A, Tay ZW, et al. Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment. Int j Hyperthermia. 2020;37(3):141–154. doi:10.1080/02656736.2020.1853252
  • Zhou H, Fan Z, Li PY, et al. Dense and dynamic polyethylene glycol shells cloak nanoparticles from uptake by liver endothelial cells for long blood circulation. ACS Nano. 2018;12(10):10130–10141. doi:10.1021/acsnano.8b04947
  • Rashwan AK, Karim N, Xu Y, et al. An updated and comprehensive review on the potential health effects of curcumin-encapsulated micro/nanoparticles. Crit Rev Food Sci Nutr. 2022;1(1):1–21. doi:10.1080/10408398.2022.2070906
  • Souri M, Soltani M, Moradi Kashkooli F, Kiani shahvandi M. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release. 2022;341:227–246. doi:10.1016/j.jconrel.2021.11.024
  • Peng L, Liang Y, Zhong X, et al. Aptamer-conjugated gold nanoparticles targeting epidermal growth factor receptor variant III for the treatment of glioblastoma. Int J Nanomed. 2020;15:1363–1372. doi:10.2147/IJN.S238206
  • Salameh JW, Zhou L, Ward SM, Santa Chalarca CF, Emrick T, Figueiredo ML. Polymer-mediated gene therapy: recent advances and merging of delivery techniques. WIREs Nanomed Nanobiotechnol. 2020;12(2):e1598. doi:10.1002/wnan.1598
  • Yi C, Yang Y, Liu B, He J, Nie Z. Polymer-guided assembly of inorganic nanoparticles. Chem Soc Rev. 2020;49(2):465–508. doi:10.1039/C9CS00725C
  • Karuppusamy C, Palanivel V. Role of nanoparticles in drug delivery system: a comprehensive review. Int J Med. 2017;9:318–325.
  • Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26(19):5905. doi:10.3390/molecules26195905
  • Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–1534. doi:10.1002/adma.201104763
  • Yin Q, Shen J, Zhang Z, Yu H, Li Y. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv. Drug Delivery Rev. 2013;65(13):1699–1715. doi:10.1016/j.addr.2013.04.011
  • Nguyen CV, Ye Q, Meyyappan M. Carbon nanotube tips for scanning probe microscopy: fabrication and high aspect ratio nanometrology. Meas Sci Technol. 2005;16(11):2138. doi:10.1088/0957-0233/16/11/003
  • Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochimica et Biophysica Acta. 2006;1758(3):404–412. doi:10.1016/j.bbamem.2005.10.008
  • Ranjita Misra SSP, Sanjeeb K. Nanoparticles: a Boon to Drug Delivery, Therapeutics, Diagnostics and Imaging. In: Nanomedicine in Cancer. Jenny Stanford Publishing; 2017.
  • Soni S, Ruhela RK, Medhi B. Nanomedicine in Central Nervous System (CNS) disorders: a present and future prospective. Adv Pharm Bull. 2016;6(3):319–335. doi:10.15171/apb.2016.044
  • Gaur M, Misra C, Yadav AB, et al. Biomedical applications of carbon nanomaterials: fullerenes, quantum dots, nanotubes, nanofibers, and graphene. Materials. 2021;14(20):5978. doi:10.3390/ma14205978
  • Gao G, Ahn M, Cho WW, Kim BS, Cho DW. 3D printing of pharmaceutical application: drug screening and drug delivery. Pharmaceutics. 2021;13(9):1373. doi:10.3390/pharmaceutics13091373
  • Janzen D, Bakirci E, Wieland A, Martin C, Dalton PD, Villmann C. Cortical neurons form a functional neuronal network in a 3D printed reinforced matrix. Adv. Healthcare Mater. 2020;9(9):1901630. doi:10.1002/adhm.201901630
  • Ye W, Li H, Yu K, et al. 3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channels. Mater Des. 2020;192:108757. doi:10.1016/j.matdes.2020.108757
  • Saylam E, Akkaya Y, Ilhan E, et al. Levodopa-Loaded 3D-printed poly (lactic) acid/chitosan neural tissue scaffold as a promising drug delivery system for the treatment of parkinson’s disease. Appl Sci. 2021;11(22):10727. doi:10.3390/app112210727
  • Perkušić M, Nižić Nodilo L, Ugrina I, et al. Chitosan-based thermogelling system for nose-to-brain donepezil delivery: optimising formulation properties and nasal deposition profile. Pharmaceutics. 2023;15(6):1660. doi:10.3390/pharmaceutics15061660
  • Fujimaki H, Uchida K, Inoue G, et al. Oriented collagen tubes combined with basic fibroblast growth factor promote peripheral nerve regeneration in a 15 mm sciatic nerve defect rat model. J Biomed Mater Res A. 2017;105(1):8–14. doi:10.1002/jbm.a.35866
  • Wu Z, Li Q, Xie S, Shan X, Cai Z. In vitro and in vivo biocompatibility evaluation of a 3D bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold. Mater Sci Eng C Mater Biol Appl. 2020;109:110530. doi:10.1016/j.msec.2019.110530
  • Gu Q, Tomaskovic-Crook E, Lozano R, et al. Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthc Mater. 2016;5(12):1429–1438. doi:10.1002/adhm.201600095
  • Gander C, Shi K, Nokhodchi A, Lam M. A review of the Benefits 3D printing brings to patients with neurological diseases. Pharmaceutics. 2023;15(3):892. doi:10.3390/pharmaceutics15030892
  • Thomas M, Willerth SM. 3-D bioprinting of neural tissue for applications in cell therapy and drug screening. Front Bioeng Biotechnol. 2017;5:69. doi:10.3389/fbioe.2017.00069
  • Amiri E, Sanjarnia P, Sadri B, Jafarkhani S, Khakbiz M. Recent advances and future directions of 3D to 6D printing in brain cancer treatment and neural tissue engineering. Biomedical Materials. 2023;18. doi:10.1088/1748-605X/ace9a4
  • Kristiawan RB, Imaduddin F, Ariawan D, Arifin Z. A review on the fused deposition modeling (FDM) 3D printing: filament processing, materials, and printing parameters. Open Eng. 2021;11(1):639–649. doi:10.1515/eng-2021-0063
  • Zhu S, Zhang T, Zheng L, et al. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol. 2021;14(1):156. doi:10.1186/s13045-021-01164-5
  • Rana I, Oh J, Baig J, Moon JH, Son S, Nam J. Nanocarriers for cancer nano-immunotherapy. Drug Deliv Transl Res. 2023;13(7):1936–1954. doi:10.1007/s13346-022-01241-3
  • Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Sig Transduct Target Ther. 2021;6(1):1–24. doi:10.1038/s41392-021-00487-6
  • Smith MW, Gumbleton M. Endocytosis at the blood–brain barrier: from basic understanding to drug delivery strategies. J Drug Targeting. 2006;14(4):191–214. doi:10.1080/10611860600650086
  • Chang EL, Ting CY, Hsu PH, et al. Angiogenesis-targeting microbubbles combined with ultrasound-mediated gene therapy in brain tumors. J Control Release. 2017;255:164–175. doi:10.1016/j.jconrel.2017.04.010
  • IAW H, Lam PYP, Hui KM. Identification and characterization of novel human glioma-specific peptides to potentiate tumor-specific gene delivery. Human Gene Therapy. 2004;15(8):719–732. doi:10.1089/1043034041648372
  • Yahya EB, Alqadhi AM. Recent trends in cancer therapy: a review on the current state of gene delivery. Life Sci. 2021;269:119087. doi:10.1016/j.lfs.2021.119087
  • Unnisa A, Greig NH, Kamal MA. Nanotechnology-based gene therapy as a credible tool in the treatment of Alzheimer’s disease. Neural Regen Res. 2023;18(10):2127–2133. doi:10.4103/1673-5374.369096
  • Yu C, Li L, Hu P, et al. Recent advances in stimulus-responsive nanocarriers for gene therapy. Adv Sci. 2021;8(14):2100540. doi:10.1002/advs.202100540
  • Sandoz D, Boisvieux-Ulrich E, Laugier C, Brard E. Interactions of estradiol benzoate and progesterone on the development of the oviduct in quail. II. (Coturnix coturnix japonica). Ultrastructural studies of two types of responses obtained by varying doses of estradiol benzoate injected. Gen Comp Endocrinol. 1975;26(4):451–467. doi:10.1016/0016-6480(75)90168-9
  • Sudhakar V, Richardson RM. Gene therapy for neurodegenerative diseases. Neurotherapeutics. 2019;16(1):166–175. doi:10.1007/s13311-018-00694-0
  • Berndt P, Winkler L, Cording J, et al. Tight junction proteins at the blood-brain barrier: far more than claudin-5. Cell Mol Life Sci. 2019;76(10):1987–2002. doi:10.1007/s00018-019-03030-7
  • Negro S, Boeva L, Slowing K, Fernandez-Carballido A, Garcia-García L, Barcia E. Efficacy of ropinirole-loaded PLGA microspheres for the reversion of rotenone- induced parkinsonism. Curr Pharm Des. 2017;23(23):3423–3431. doi:10.2174/1381612822666160928145346
  • National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333(24):1581–1588. doi:10.1056/NEJM199512143332401
  • Celentano W, Pizzocri M, Moncalvo F, et al. Functional Poly(ε-caprolactone)/Poly(ethylene glycol) copolymers with complex topologies for doxorubicin delivery to a proteinase-rich tumor environment. ACS Appl Polym Mater. 2022;4(11):8043–8056. doi:10.1021/acsapm.2c00897
  • Han L, Jiang C. Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharmaceutica Sinica B. 2021;11(8):2306–2325. doi:10.1016/j.apsb.2020.11.023
  • Zuardi AW, Crippa JS, Hallak JEC, Moreira FA, Guimarães FS. Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug. Braz J Med Biol Res. 2006;39:421–429. doi:10.1590/S0100-879X2006000400001
  • Kondiah PPD, Choonara YE, Kondiah PJ, et al. 17 - Nanocomposites for therapeutic application in multiple sclerosis. In: Inamuddin AAM, Mohammad A, editors. Applications of Nanocomposite Materials in Drug Delivery. Woodhead Publishing Series in Biomaterials. Woodhead Publishing; 2018:391–408. doi:10.1016/B978-0-12-813741-3.00017-0
  • Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. Cancer Drug Resist. 2021;4(1):17–43. doi:10.20517/cdr.2020.79
  • Teleanu RI, Preda MD, Niculescu AG, et al. Current strategies to enhance delivery of drugs across the blood-brain barrier. Pharmaceutics. 2022;14(5):987. doi:10.3390/pharmaceutics14050987
  • Barbara R, Belletti D, Pederzoli F, et al. Novel Curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt abeta aggregates. Int J Pharm. 2017;526(1–2):413–424. doi:10.1016/j.ijpharm.2017.05.015
  • Englert C, Trützschler AK, Raasch M, et al. Crossing the blood-brain barrier: glutathione-conjugated poly(ethylene imine) for gene delivery. J Control Release. 2016;241:1–14. doi:10.1016/j.jconrel.2016.08.039
  • Gao S, Tian H, Xing Z, et al. A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting treatment. J Control Release. 2016;243:357–369. doi:10.1016/j.jconrel.2016.10.027
  • O Q, M Y, Z W, T J, C Z, Z Q. New advances in brain-targeting nano-drug delivery systems for Alzheimer’s disease. J Drug Targeting. 2022;30(1). doi:10.1080/1061186X.2021.1927055
  • Rassu G, Soddu E, Posadino AM, et al. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf B Biointerfaces. 2017;152:296–301. doi:10.1016/j.colsurfb.2017.01.031
  • Ng EP, Mintova S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous Mesoporous Mater. 2008;114(1):1–26. doi:10.1016/j.micromeso.2007.12.022
  • Niu S, Zhang LK, Zhang L, et al. Inhibition by multifunctional magnetic nanoparticles loaded with Alpha-Synuclein RNAi Plasmid in a parkinson’s disease model. Theranostics. 2017;7(2):344–356. doi:10.7150/thno.16562
  • Pan X, Veroniaina H, Su N, et al. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J Pharm Sci. 2021;16(6):687–703. doi:10.1016/j.ajps.2021.05.003
  • Ishizu N, Yui D, Hebisawa A, et al. Impaired striatal dopamine release in homozygous Vps35 D620N knock-in mice. Hum Mol Genet. 2016;25(20):4507–4517. doi:10.1093/hmg/ddw279
  • Han L, Cai Q, Tian D, et al. Targeted drug delivery to ischemic stroke via chlorotoxin-anchored, lexiscan-loaded nanoparticles. Nanomedicine. 2016;12(7):1833–1842. doi:10.1016/j.nano.2016.03.005
  • He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–3666. doi:10.1016/j.biomaterials.2010.01.065
  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed. 2014;53(46):12320–12364. doi:10.1002/anie.201403036
  • Xie J, Shen Z, Anraku Y, Kataoka K, Chen X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials. 2019;224:119491. doi:10.1016/j.biomaterials.2019.119491
  • Bhaskar S, Tian F, Stoeger T, et al. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Particle Fibre Toxicol. 2010;7(1):3. doi:10.1186/1743-8977-7-3
  • Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert Opin Drug Delivery. 2013;10(7):957–972. doi:10.1517/17425247.2013.790887
  • Graff CL, Pollack GM. Nasal drug administration: potential for targeted central nervous system delivery. J Pharmaceut Sci. 2005;94(6):1187–1195. doi:10.1002/jps.20318
  • Zhang X. Clinical Applications of Tumor-targeted Systems. In: Huang R, Wang Y editors. New Nanomaterials and Techniques for Tumor-Targeted Systems. Springer; 2020:437–456. doi:10.1007/978-981-15-5159-8_13.
  • Correia AC, Monteiro AR, Silva R, Moreira JN, Sousa Lobo JM, Silva AC. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders. Adv. Drug Delivery Rev. 2022;189:114485. doi:10.1016/j.addr.2022.114485
  • De Martini LB, Sulmona C, Brambilla L, Rossi D. Cell-penetrating peptides as valuable tools for nose-to-brain delivery of biological drugs. Cells. 2023;12(12):1643. doi:10.3390/cells12121643
  • Bhatia S. Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications. In: Bhatia S editor. Natural Polymer Drug Delivery Systems: Nanoparticles, Plants, and Algae. Springer International Publishing; 2016:33–93. doi:10.1007/978-3-319-41129-3_2.
  • Tan Q, Zhao S, Xu T, et al. Getting drugs to the brain: advances and prospects of organic nanoparticle delivery systems for assisting drugs to cross the blood–brain barrier. J Mat Chem B. 2022;10(45):9314–9333. doi:10.1039/D2TB01440H
  • Kaur N, Kumar V, Mahender T, et al. Chapter 5 - Nanomedical drug delivery for neurodegenerative disease. In: Yadav AK, Shukla R, Flora SJS, editors. Nanomedical Drug Delivery for Neurodegenerative Diseases. Academic Press; 2022:67–79. doi:10.1016/B978-0-323-85544-0.00016-2
  • Bolhassani A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochimica et Biophysica Acta. 2011;1816(2):232–246. doi:10.1016/j.bbcan.2011.07.006
  • Fonseca SB, Pereira MP, Kelley SO. Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv. Drug Delivery Rev. 2009;61(11):953–964. doi:10.1016/j.addr.2009.06.001
  • Chugh A, Eudes F, Shim YS. Cell-penetrating peptides: nanocarrier for macromolecule delivery in living cells. IUBMB Life. 2010;62(3):183–193. doi:10.1002/iub.297
  • Hervé F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. AAPS J. 2008;10(3):455–472. doi:10.1208/s12248-008-9055-2
  • Tashima T. Smart strategies for therapeutic agent delivery into brain across the blood–brain barrier using receptor-mediated transcytosis. Chem Pharm Bull. 2020;68(4):316–325. doi:10.1248/cpb.c19-00854
  • Toth AE, Holst MR, Nielsen MS. Vesicular transport machinery in brain endothelial cells: what we know and what we do not. Curr Pharm Des. 2020;26(13):1405–1416. doi:10.2174/1381612826666200212113421
  • Trompetero A, Gordillo A, Del Pilar MC, Cristina V, Bustos Cruz RH. Alzheimer’s disease and parkinson’s disease: a review of current treatment adopting a nanotechnology approach. Curr Pharm Des. 2018;24(1):22–45. doi:10.2174/1381612823666170828133059
  • Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020;17(1):69. doi:10.1186/s12987-020-00230-3
  • Nguyen TT, Nguyen TTD, Tran NMA, Van Vo G. Lipid-based nanocarriers via nose-to-brain pathway for central nervous system disorders. Neurochem Res. 2022;47(3):552–573. doi:10.1007/s11064-021-03488-7
  • Pandit R, Chen L, Götz J. The blood-brain barrier: physiology and strategies for drug delivery. Adv. Drug Delivery Rev. 2020;165–166:1–14. doi:10.1016/j.addr.2019.11.009
  • Montegiove N, Calzoni E, Emiliani C, Cesaretti A. Biopolymer nanoparticles for nose-to-brain drug delivery: a new promising approach for the treatment of neurological diseases. J Functional Biomaterials. 2022;13(3):125. doi:10.3390/jfb13030125
  • Zha S, Wong KL, All AH. Intranasal delivery of functionalized polymeric nanomaterials to the brain. Adv Healthcare Mater. 2022;11(11):2102610. doi:10.1002/adhm.202102610
  • Xie A, Hanif S, Ouyang J, et al. Stimuli-responsive prodrug-based cancer nanomedicine. eBioMedicine. 2020:56. doi:10.1016/j.ebiom.2020.102821
  • Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI. Neuronanomedicine: an up-to-date overview. Pharmaceutics. 2019;11(3):101. doi:10.3390/pharmaceutics11030101
  • Aryal M, Arvanitis CD, Alexander PM, McDannold N. Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Adv. Drug Delivery Rev. 2014;72:94–109. doi:10.1016/j.addr.2014.01.008
  • D’Agata F, Ruffinatti FA, Boschi S, et al. Magnetic nanoparticles in the central nervous system: targeting principles, applications and safety issues. Molecules. 2017;23(1):9. doi:10.3390/molecules23010009
  • Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Delivery Rev. 2008;60(15):1627–1637. doi:10.1016/j.addr.2008.08.003
  • Rondon A, Mahri S, Morales-Yanez F, Dumoulin M, Vanbever R. Protein engineering strategies for improved pharmacokinetics. Adv Funct Mater. 2021;31(44):2101633. doi:10.1002/adfm.202101633
  • Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev. 2012;41(7):2943–2970. doi:10.1039/C2CS15355F
  • Kim SS, Noh YH, Yoon OJ, Yoo SH. Carbon nanotubes serving as stem cell scaffold. Available from: https://patents.google.com/patent/US20090148417A1/en. Accessed September 14, 2023.
  • Chountoulesi M, Demetzos C. Promising nanotechnology approaches in treatment of autoimmune diseases of central nervous system. Brain Sci. 2020;10(6):338. doi:10.3390/brainsci10060338
  • Reddy JR. Preventive and therapeutic vaccine for Alzheimer’s disease. Available from: https://patents.google.com/patent/US20100173004A1/en. Accessed September 14, 2023.
  • Barenholz Y, Ovadia H, Kizelsztein P. Liposomal formulations comprising an amphipathic weak base like tempamine for treatment of neurodegenerative conditions. 2011. Available from: https://patents.google.com/patent/US20110027351A1/en. Accessed September 14, 2023.
  • Schwarz J, Weisspapir M. Colloidal solid lipid vehicle for pharmaceutical use. Available from: https://patents.google.com/patent/US20060222716A1/en. Accessed September 14, 2023.
  • Sung HW, Lin YH, Chen MC, Tu H. Nanoparticles for drug delivery. Available from: https://patents.google.com/patent/US20070237827A1/en. Accessed September 14, 2023.
  • Nelson T, Quattrone A, Alkon D. Artificial low-density lipoprotein carriers for transport of substances across the blood-brain barrier. Available from: https://patents.google.com/patent/US7682627B2/en. Accessed September 14, 2023.
  • Duskey JT, Belletti D, Pederzoli F, et al. Chapter One - Current Strategies for the Delivery of Therapeutic Proteins and Enzymes to Treat Brain Disorders. In: Sharma HS, Sharma A, editors. International Review of Neurobiology. Vol 137. Nanomedicine in Central Nervous System Injury and Repair. Academic Press; 2017:1–28. doi:10.1016/bs.irn.2017.08.006
  • Khafagy ES, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Delivery Rev. 2007;59(15):1521–1546. doi:10.1016/j.addr.2007.08.019
  • Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics. 2018;10(3):116. doi:10.3390/pharmaceutics10030116
  • Salunkhe S, Basak M, Chitkara D, Mittal A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: strategies and significance. J Control Release. 2020;326:599–614. doi:10.1016/j.jconrel.2020.07.042
  • Hinge NS, Kathuria H, Pandey MM. Engineering of structural and functional properties of nanotherapeutics and nanodiagnostics for intranasal brain targeting in Alzheimer’s. Appl Mater Today. 2022;26:101303. doi:10.1016/j.apmt.2021.101303
  • Weber WA, Czernin J, Anderson CJ, et al. The future of nuclear medicine, molecular imaging, and theranostics. J Nucl Med. 2020;61(Supplement 2):263S–272S. doi:10.2967/jnumed.120.254532
  • Chorny M, Hood E, Levy RJ, Muzykantov VR. Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles. J Control Release. 2010;146(1):144–151. doi:10.1016/j.jconrel.2010.05.003
  • Galliani M, Santi M, Del Grosso A, et al. Cross-linked enzyme aggregates as versatile tool for enzyme delivery: application to polymeric nanoparticles. Bioconjugate Chem. 2018;29(7):2225–2231. doi:10.1021/acs.bioconjchem.8b00206
  • Hamill K. Delivery of an active lysosomal enzyme using GNeosomes. J Mat Chem B. 2016;4(35):5794–5797. doi:10.1039/C6TB01387B
  • Mukherjee S, Madamsetty VS, Bhattacharya D, Roy Chowdhury S, Paul MK, Mukherjee A. Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv Funct Mater. 2020;30(35):2003054. doi:10.1002/adfm.202003054
  • Veiga N, Diesendruck Y, Peer D. Targeted nanomedicine: lessons learned and future directions. J Control Release. 2023;355:446–457. doi:10.1016/j.jconrel.2023.02.010
  • Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opin Drug Delivery. 2018;15(1):93–114. doi:10.1080/17425247.2017.1360863
  • Blau R, Krivitsky A, Epshtein Y, Satchi-Fainaro R. Are nanotheranostics and nanodiagnostics-guided drug delivery stepping stones towards precision medicine? Drug Resist Updates. 2016;27:39–58. doi:10.1016/j.drup.2016.06.003
  • Swift B, Jain L, White C, et al. Innovation at the intersection of clinical trials and real-world data science to advance patient care. Clin Transl Sci. 2018;11(5):450–460. doi:10.1111/cts.12559
  • Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Delivery Rev. 2012;64(13):1394–1416. doi:10.1016/j.addr.2012.06.006
  • Bhaladhare S, Bhattacharjee S. Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): a review. Int J Biol Macromol. 2023;226:535–553. doi:10.1016/j.ijbiomac.2022.12.076
  • Kaushik A, Jayant RD, Bhardwaj V, Nair M. Personalized nanomedicine for CNS diseases. Drug Discovery Today. 2018;23(5):1007–1015. doi:10.1016/j.drudis.2017.11.010
  • Mishra AK, Das R, Sahoo S, Biswal B. Chapter Ten - Global regulations and legislations on nanoparticles usage and application in diverse horizons. In: Turan NB, Engin GO, Bilgili MS editors. Comprehensive Analytical Chemistry. Vol 99. Environmental Nanotechnology: Implications and Applications. Elsevier; 2022:261–290. doi:10.1016/bs.coac.2021.12.004.
  • Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharm. 2019;16(1):1–23. doi:10.1021/acs.molpharmaceut.8b00810
  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–2387. doi:10.1007/s11095-016-1958-5
  • Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci. 2020;8(17):4653–4664. doi:10.1039/D0BM00558D
  • Alphandéry E, Grand-Dewyse P, Lefèvre R, Mandawala C, Durand-Dubief M. Cancer therapy using nanoformulated substances: scientific, regulatory and financial aspects. Expert Rev Anticancer Ther. 2015;15(10):1233–1255. doi:10.1586/14737140.2015.1086647
  • Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A. Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomed Nanotechnol Biol Med. 2016;12(1):81–103. doi:10.1016/j.nano.2015.08.006
  • Fan AM, Alexeeff G. Nanotechnology and nanomaterials: toxicology, risk assessment, and regulations. J Nanosci Nanotech. 2010;10(12):8646–8657. doi:10.1166/jnn.2010.2493
  • Luijten PR, van Dongen GAMS, Moonen CT, Storm G, Crommelin DJA. Public–private partnerships in translational medicine: concepts and practical examples. J Control Release. 2012;161(2):416–421. doi:10.1016/j.jconrel.2012.03.012
  • Bella D, Antonietta M. Overview and update on extracellular vesicles: considerations on exosomes and their application in modern medicine. Biology. 2022;11(6):804. doi:10.3390/biology11060804
  • R B, De JW, Re G Nanotechnology in medical applications: state-of-the-art in materials and devices. Rijksinstituut voor Volksgezondheid en Milieu RIVM; 2005. Available from: https://rivm.openrepository.com/handle/10029/7265. Accessed September 14, 2023.
  • George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int J Pharm. 2019;561:244–264. doi:10.1016/j.ijpharm.2019.03.011
  • Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–157. doi:10.1016/j.jconrel.2014.12.030
  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166(1):8–23. doi:10.1016/j.cis.2011.04.003
  • Shah S, Famta P, Bagasariya D, et al. Tuning mesoporous silica nanoparticles in novel avenues of cancer therapy. Mol Pharm. 2022;19(12):4428–4452. doi:10.1021/acs.molpharmaceut.2c00374
  • Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater. 2022;5(6):1593–1615. doi:10.1007/s42247-021-00335-x
  • Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics. 2022;14(4):883. doi:10.3390/pharmaceutics14040883
  • Huynh L, Neale C, Pomès R, Allen C. Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery. Nanomedicine. 2012;8(1):20–36. doi:10.1016/j.nano.2011.05.006
  • He Y, Ye Z, Liu X, et al. Can machine learning predict drug nanocrystals? J Control Release. 2020;322:274–285. doi:10.1016/j.jconrel.2020.03.043
  • Duarte Y, Márquez-Miranda V, Miossec MJ, González-Nilo F. Integration of target discovery, drug discovery and drug delivery: a review on computational strategies. Wiley Interdiscip Rev Nano Nanobio. 2019;11(4):e1554. doi:10.1002/wnan.1554
  • Gonzalez-Ibanez AM, Gonzalez-Nilo F, Cachau R. The collaboratory for structural nanobiology. Biophys J. 2009;96(3):49a. doi:10.1016/j.bpj.2008.12.151
  • Ostraat ML, Mills KC, Guzan KA, Murry D. The Nanomaterial Registry: facilitating the sharing and analysis of data in the diverse nanomaterial community. Int J Nanomed. 2013;8(sup1):7–13. doi:10.2147/IJN.S40722