103
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Zinc Oxide Nanoparticles Exacerbate Epileptic Seizures by Modulating the TLR4-Autophagy Axis

, , ORCID Icon, , , , , , , , & show all
Pages 2025-2038 | Received 23 Oct 2023, Accepted 16 Feb 2024, Published online: 01 Mar 2024

References

  • Diez-Pascual AM, Rahdar A. Functional nanomaterials in biomedicine: current uses and potential applications. ChemMedChem. 2022;17(16):e202200142. doi:10.1002/cmdc.202200142
  • Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2(1):3. doi:10.1186/1477-3155-2-3
  • Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S. Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Anim Nutr. 2016;2(3):134–141. doi:10.1016/j.aninu.2016.06.003
  • Iavicoli I, Leso V, Beezhold DH, Shvedova AA. Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol. 2017;329:96–111. doi:10.1016/j.taap.2017.05.025
  • Esmaeillou M, Moharamnejad M, Hsankhani R, Tehrani AA, Maadi H. Toxicity of ZnO nanoparticles in healthy adult mice. Environ Toxicol Pharmacol. 2013;35(1):67–71. doi:10.1016/j.etap.2012.11.003
  • Tian L, Lin B, Wu L, et al. Neurotoxicity induced by zinc oxide nanoparticles: age-related differences and interaction. Sci Rep. 2015;5:16117. doi:10.1038/srep16117
  • Liang H, Chen A, Lai X, et al. Neuroinflammation is induced by tongue-instilled ZnO nanoparticles via the Ca(2+)-dependent NF-κB and MAPK pathways. Part Fibre Toxicol. 2018;15(1):39. doi:10.1186/s12989-018-0274-0
  • Amara S, Ben-Slama I, Mrad I, et al. Acute exposure to zinc oxide nanoparticles does not affect the cognitive capacity and neurotransmitters levels in adult rats. Nanotoxicology. 2014;8(Suppl 1):208–215. doi:10.3109/17435390.2013.879342
  • Kao YY, Cheng TJ, Yang DM, Wang CT, Chiung YM, Liu PS. Demonstration of an olfactory bulb-brain translocation pathway for ZnO nanoparticles in rodent cells in vitro and in vivo. J Mol Neurosci. 2012;48(2):464–471. doi:10.1007/s12031-012-9756-y
  • Cendes F. Epilepsy care in China and its relevance for other countries. Lancet Neurol. 2021;20(5):333–334. doi:10.1016/s1474-4422(21)00096-x
  • Ding D, Zhou D, Sander JW, Wang W, Li S, Hong Z. Epilepsy in China: major progress in the past two decades. Lancet Neurol Apr. 2021;20(4):316–326. doi:10.1016/s1474-4422(21)00023-5
  • Feigin VL, Nichols E, Alam T. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18(5):459–480. doi:10.1016/s1474-4422(18)30499-x
  • Arrieta O, Palencia G, García-Arenas G, Morales-Espinosa D, Hernández-Pedro N, Sotelo J. Prolonged exposure to lead lowers the threshold of pentylenetetrazole-induced seizures in rats. Epilepsia. 2005;46(10):1599–1602. doi:10.1111/j.1528-1167.2005.00267.x
  • Cakmak S, Dales RE, Vidal CB. Air pollution and hospitalization for epilepsy in Chile. Environ Int. 2010;36(6):501–505. doi:10.1016/j.envint.2010.03.008
  • Xu C, Fan YN, Kan HD, et al. The novel relationship between urban air pollution and epilepsy: a time series study. PLoS One. 2016;11(8):e0161992. doi:10.1371/journal.pone.0161992
  • Hjortebjerg D, Nybo Andersen AM, Ketzel M, Raaschou-Nielsen O, Sørensen M. Exposure to traffic noise and air pollution and risk for febrile seizure: a cohort study. Scand J Work Environ Health. 2018;44(5):539–546. doi:10.5271/sjweh.3724
  • Ma J, Guo A, Wang S, et al. From the lung to the knee joint: toxicity evaluation of carbon black nanoparticles on macrophages and chondrocytes. J Hazard Mater. 2018;353:329–339. doi:10.1016/j.jhazmat.2018.04.025
  • He M, Jiang X, Zou Z, et al. Exposure to carbon black nanoparticles increases seizure susceptibility in male mice. Nanotoxicology. 2020;14(5):595–611. doi:10.1080/17435390.2020.1728412
  • Zhang S, Cheng S, Jiang X, et al. Gut-brain communication in hyperfunction of 5-hydroxytryptamine induced by oral zinc oxide nanoparticles exposure in young mice. Food Chem Toxicol. 2020;135:110906. doi:10.1016/j.fct.2019.110906
  • Wang Y, Yuan L, Yao C, et al. A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives. Nanoscale. 2014;6(24):15333–15342. doi:10.1039/c4nr05480f
  • Qin R, Cao S, Lyu T, Qi C, Zhang W, Wang Y. CDYL deficiency disrupts neuronal migration and increases susceptibility to epilepsy. Cell Rep. 2017;18(2):380–390. doi:10.1016/j.celrep.2016.12.043
  • Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electro Clin Neurophy. 1972;32(3):281–294. doi:10.1016/0013-4694(72)90177-0
  • Ono Y, Maejima Y, Saito M, et al. TAK-242, a specific inhibitor of toll-like receptor 4 signalling, prevents endotoxemia-induced skeletal muscle wasting in mice. Sci Rep. 2020;10(1):694. doi:10.1038/s41598-020-57714-3
  • Meng J, Yang J, Pan T, Qu X, Cui S. ZnO nanoparticles promote the malignant transformation of colorectal epithelial cells in APC(min/+) mice. Environ Int. 2022;158:106923. doi:10.1016/j.envint.2021.106923
  • Fujihara J, Nishimoto N. Review of zinc oxide nanoparticles: toxicokinetics, tissue distribution for various exposure routes, toxicological effects, toxicity mechanism in mammals, and an approach for toxicity reduction. Biol Trace Elem Res. 2023;202(1):9–23. doi:10.1007/s12011-023-03644-w
  • Liu H, Yang H, Fang Y, et al. Neurotoxicity and biomarkers of zinc oxide nanoparticles in main functional brain regions and dopaminergic neurons. Sci Total Environ. 2020;705:135809. doi:10.1016/j.scitotenv.2019.135809
  • Jin M, Li N, Sheng W, et al. Toxicity of different zinc oxide nanomaterials and dose-dependent onset and development of Parkinson’s disease-like symptoms induced by zinc oxide nanorods. Environ Int. 2021;146:106179. doi:10.1016/j.envint.2020.106179
  • Li Q, Han Y, Du J, et al. Alterations of apoptosis and autophagy in developing brain of rats with epilepsy: changes in LC3, P62, Beclin-1 and Bcl-2 levels. Neurosci Res. 2018;130:47–55. doi:10.1016/j.neures.2017.08.004
  • Yang D, Zhang M, Gan Y, et al. Involvement of oxidative stress in ZnO NPs-induced apoptosis and autophagy of mouse GC-1 spg cells. Ecotoxicol Environ Saf. 2020;202:110960. doi:10.1016/j.ecoenv.2020.110960
  • Mawed SA, Marini C, Alagawany M, et al. Zinc Oxide Nanoparticles (ZnO-NPs) Suppress Fertility by Activating Autophagy, Apoptosis, and Oxidative Stress in the Developing Oocytes of Female Zebrafish. Antioxidants (Basel). 2022;11(8):1.
  • Zhang H, Chen F, Li Y, et al. More serious autophagy can be induced by ZnO nanoparticles than single-walled carbon nanotubes in rat tracheal epithelial cells. Environ Toxicol: Int J. 2021;36(2):238–248. doi:10.1002/tox.23029
  • Kim TS, Jin YB, Kim YS, et al. SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy. 2019;15(8):1356–1375. doi:10.1080/15548627.2019.1582743
  • Kandadi MR, Frankel AE, Ren J. Toll-like receptor 4 knockout protects against anthrax lethal toxin-induced cardiac contractile dysfunction: role of autophagy. Br J Pharmacol. 2012;167(3):612–626. doi:10.1111/j.1476-5381.2012.02040.x
  • Wang S, Song X, Zhang K, et al. Overexpression of toll-like receptor 4 affects autophagy, oxidative stress, and inflammatory responses in monocytes of transgenic sheep. Front Cell Dev Biol. 2020;8:248. doi:10.3389/fcell.2020.00248
  • Wang L, Song LF, Chen XY, et al. MiR-181b inhibits P38/JNK signaling pathway to attenuate autophagy and apoptosis in juvenile rats with kainic acid-induced epilepsy via targeting TLR4. CNS Neurosci Ther. 2019;25(1):112–122. doi:10.1111/cns.12991
  • Lee JA. Neuronal autophagy: a housekeeper or a fighter in neuronal cell survival? Exp Neurobiol. 2012;21(1):1–8. doi:10.5607/en.2012.21.1.1
  • Crawley O, Grill B. Autophagy in axonal and presynaptic development. Curr Opin Neurobiol. 2021;69:139–148. doi:10.1016/j.conb.2021.03.011
  • Bejarano E, Rodríguez-Navarro JA. Autophagy and amino acid metabolism in the brain: implications for epilepsy. Amino Acids. 2015;47(10):2113–2126. doi:10.1007/s00726-014-1822-z
  • McMahon J, Huang X, Yang J, et al. Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J Neurosci. 2012;32(45):15704–15714. doi:10.1523/jneurosci.2392-12.2012
  • Buckmaster PS, Ingram EA, Wen X. Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J Neurosci. 2009;29(25):8259–8269. doi:10.1523/jneurosci.4179-08.2009
  • Liu J, Ke P, Guo H, et al. Activation of TLR7-mediated autophagy increases epileptic susceptibility via reduced KIF5A-dependent GABA(A) receptor transport in a murine model. Exp Mol Med. 2023;55(6):1159–1173. doi:10.1038/s12276-023-01000-5
  • Sumitomo A, Yukitake H, Hirai K, et al. Ulk2 controls cortical excitatory-inhibitory balance via autophagic regulation of p62 and GABAA receptor trafficking in pyramidal neurons. Hum Mol Genet. 2018;27(18):3165–3176. doi:10.1093/hmg/ddy219
  • Overhoff M, Tellkamp F, Hess S, et al. Autophagy regulates neuronal excitability by controlling cAMP/protein kinase A signaling at the synapse. EMBO j. 2022;41(22):e110963. doi:10.15252/embj.2022110963
  • Giansante G, Marte A, Romei A, et al. Presynaptic L-type ca(2+) channels increase glutamate release probability and excitatory strength in the hippocampus during chronic neuroinflammation. J Neurosci. 2020;40(36):6825–6841. doi:10.1523/jneurosci.2981-19.2020