284
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Nanoparticle-Facilitated Therapy: Advancing Tools in Peripheral Nerve Regeneration

, & ORCID Icon
Pages 19-34 | Received 01 Oct 2023, Accepted 21 Dec 2023, Published online: 02 Jan 2024

References

  • Barnes SL, Miller TA, Simon NG. Traumatic peripheral nerve injuries: diagnosis and management. Curr Opin Neurol. 2022;35(6):718–727. doi:10.1097/WCO.0000000000001116
  • Lopes B, Sousa P, Alvites R, et al. Peripheral nerve injury treatments and advances: one health perspective. Int J Mol Sci. 2022;23(2):918. doi:10.3390/ijms23020918
  • Rahman M. Magnetic resonance imaging and iron-oxide nanoparticles in the era of personalized medicine. Nanotheranostics. 2023;7(4):424–449. doi:10.7150/ntno.86467
  • Olivo R, Tsao B. Peripheral nerve injuries in sport. Neurol Clin. 2017;35(3):559–572. doi:10.1016/j.ncl.2017.03.010
  • Modrak M, Talukder M, Gurgenashvili K, Noble M, Elfar JC. Peripheral nerve injury and myelination: potential therapeutic strategies. J Neurosci Res. 2020;98(5):780–795. doi:10.1002/jnr.24538
  • Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev. 2019;148:308–343. doi:10.1016/j.addr.2019.01.006
  • Sharifi M, Farahani MK, Salehi M, et al. Exploring the physicochemical, electroactive, and biodelivery properties of metal nanoparticles on peripheral nerve regeneration. ACS Biomater Sci Eng. 2023;9(1):106–138. doi:10.1021/acsbiomaterials.2c01216
  • Soto PA, Vence M, Pinero GM, et al. Sciatic nerve regeneration after traumatic injury using magnetic targeted adipose-derived mesenchymal stem cells. Acta Biomater. 2021;130:234–247. doi:10.1016/j.actbio.2021.05.050
  • Jin Y, Zhang W, Zhang Y, et al. Multifunctional biomimetic hydrogel based on graphene nanoparticles and sodium alginate for peripheral nerve injury therapy. Biomater Adv. 2022;135:212727. doi:10.1016/j.bioadv.2022.212727
  • Hanwright PJ, Qiu C, Rath J, et al. Sustained IGF-1 delivery ameliorates effects of chronic denervation and improves functional recovery after peripheral nerve injury and repair. Biomaterials. 2022;280:121244. doi:10.1016/j.biomaterials.2021.121244
  • Das S, Sharma M, Saharia D, Sarma KK, Muir EM, Bora U. Electrospun silk-polyaniline conduits for functional nerve regeneration in rat sciatic nerve injury model. Biomed Mater. 2017;12(4):045025. doi:10.1088/1748-605X/aa7802
  • Lackington WA, Raftery RM, O’brien FJ. In vitro efficacy of a gene-activated nerve guidance conduit incorporating non-viral PEI-pDNA nanoparticles carrying genes encoding for NGF, GDNF and c-Jun. Acta Biomater. 2018;75:115–128. doi:10.1016/j.actbio.2018.06.014
  • Huang L, Yang X, Deng L, et al. Biocompatible chitin hydrogel incorporated with PEDOT nanoparticles for peripheral nerve repair. ACS Appl Mater Interfaces. 2021;13(14):16106–16117. doi:10.1021/acsami.1c01904
  • Sun X, Bai Y, Zhai H, et al. Devising micro/nano-architectures in multi-channel nerve conduits towards a pro-regenerative matrix for the repair of spinal cord injury. Acta Biomater. 2019;86:194–206. doi:10.1016/j.actbio.2018.12.032
  • Amini S, Saudi A, Amirpour N, et al. Application of electrospun polycaprolactone fibers embedding lignin nanoparticle for peripheral nerve regeneration: in vitro and in vivo study. Int J Biol Macromol. 2020;159:154–173. doi:10.1016/j.ijbiomac.2020.05.073
  • Das S, Sharma M, Saharia D, et al. In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials. 2015;62:66–75. doi:10.1016/j.biomaterials.2015.04.047
  • Ding T, Lu WW, Zheng Y, Li Z, Pan H, Luo Z. Rapid repair of rat sciatic nerve injury using a nanosilver-embedded collagen scaffold coated with laminin and fibronectin. Regener Med. 2011;6(4):437–447. doi:10.2217/rme.11.39
  • Pop NL, Nan A, Urda-Cimpean AE, et al. Chitosan functionalized magnetic nanoparticles to provide neural regeneration and recovery after experimental model induced peripheral nerve injury. Biomolecules. 2021;11(5):676. doi:10.3390/biom11050676
  • Zhan Y, Zhou Z, Chen M, Gong X. Photothermal treatment of polydopamine nanoparticles@hyaluronic acid methacryloyl hydrogel against peripheral nerve adhesion in a rat model of sciatic nerve. Int J Nanomed. 2023;18:2777–2793. doi:10.2147/IJN.S410092
  • Ebrahimi-Zadehlou P, Najafpour A, Mohammadi R. Assessments of regenerative potential of silymarin nanoparticles loaded into chitosan conduit on peripheral nerve regeneration: a transected sciatic nerve model in rat. Neurol Res. 2021;43(2):148–156. doi:10.1080/01616412.2020.1831341
  • Lopes CDF, Goncalves NP, Gomes CP, Saraiva MJ, Pego AP. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury. Biomaterials. 2017;121:83–96. doi:10.1016/j.biomaterials.2016.12.025
  • Harrison J, Bartlett CA, Cowin G, et al. In vivo imaging and biodistribution of multimodal polymeric nanoparticles delivered to the optic nerve. Small. 2012;8(10):1579–1589. doi:10.1002/smll.201102648
  • Xiong Y, Feng Q, Lu L, et al. Metal-organic frameworks and their composites for chronic wound healing: from bench to bedside. Adv Mater. 2023:e2302587. doi:10.1002/adma.202302587
  • Zhang Y, Khalique A, Du X, et al. Biomimetic design of mitochondria-targeted hybrid nanozymes as superoxide scavengers. Adv Mater. 2021;33(9):e2006570.
  • Xiong Y, Lin Z, Bu P, et al. A whole-course-repair system based on neurogenesis-angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing. Adv Mater. 2023;35(19):e2212300. doi:10.1002/adma.202212300
  • Buchman JT, Hudson-Smith NV, Landy KM, Haynes CL. Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc Chem Res. 2019;52(6):1632–1642. doi:10.1021/acs.accounts.9b00053
  • Zhang YN, Poon W, Tavares AJ, Mcgilvray ID, Chan WCW. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–348. doi:10.1016/j.jconrel.2016.01.020
  • Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26–49. doi:10.1002/smll.200700595
  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–2387. doi:10.1007/s11095-016-1958-5
  • Casals E, Zeng M, Parra-Robert M, et al. Cerium oxide nanoparticles: advances in biodistribution, toxicity, and preclinical exploration. Small. 2020;16(20):e1907322. doi:10.1002/smll.201907322
  • Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40(3):1647–1671. doi:10.1039/C0CS00018C
  • Joris F, Manshian BB, Peynshaert K, De Smedt SC, Braeckmans K, Soenen SJ. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro-in vivo gap. Chem Soc Rev. 2013;42(21):8339–8359. doi:10.1039/c3cs60145e
  • Chrishtop VV, Mironov VA, Prilepskii AY, Nikonorova VG, Vinogradov VV. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology. 2021;15(2):167–204. doi:10.1080/17435390.2020.1842934
  • Chakravarty R, Hong H, Cai W. Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm. 2014;11(11):3777–3797. doi:10.1021/mp500173s
  • Angelova A, Angelov B, Drechsler M, Lesieur S. Neurotrophin delivery using nanotechnology. Drug Discov Today. 2013;18(23–24):1263–1271. doi:10.1016/j.drudis.2013.07.010
  • Singh D, Singh D, Zo S, Han SS. Nano-biomimetics for nano/micro tissue regeneration. J Biomed Nanotechnol. 2014;10(10):3141–3161.
  • Guo S, Perets N, Betzer O, et al. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury. ACS Nano. 2019;13(9):10015–10028. doi:10.1021/acsnano.9b01892
  • Khare P, Dave KM, Kamte YS, Manoharan MA, O’donnell LA, Manickam DS. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells. AAPS J. 2021;24(1):8. doi:10.1208/s12248-021-00653-2
  • Lacko CS, Singh I, Wall MA, et al. Magnetic particle templating of hydrogels: engineering naturally derived hydrogel scaffolds with 3D aligned microarchitecture for nerve repair. J Neural Eng. 2020;17(1):016057. doi:10.1088/1741-2552/ab4a22
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20. doi:10.1021/nn900002m
  • Gaspar VM, Lavrador P, Borges J, Oliveira MB, Mano JF. Advanced bottom-up engineering of living architectures. Adv Mater. 2020;32(6):e1903975. doi:10.1002/adma.201903975
  • Martynenko IV, Ruider V, Dass M, Liedl T, Nickels PC. DNA origami meets bottom-up nanopatterning. ACS Nano. 2021;15(7):10769–10774. doi:10.1021/acsnano.1c04297
  • Fu X, Cai J, Zhang X, Li WD, Ge H, Hu Y. Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Adv Drug Deliv Rev. 2018;132:169–187. doi:10.1016/j.addr.2018.07.006
  • Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41(7):2971–3010. doi:10.1039/c2cs15344k
  • Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2016;60:569–578. doi:10.1016/j.msec.2015.11.067
  • Xie F, Wang M, Chen Q, et al. Endogenous stimuli-responsive nanoparticles for cancer therapy: from bench to bedside. Pharmacol Res. 2022;186:106522. doi:10.1016/j.phrs.2022.106522
  • Krishnan N, Fang RH, Zhang L. Engineering of stimuli-responsive self-assembled biomimetic nanoparticles. Adv Drug Deliv Rev. 2021;179:114006. doi:10.1016/j.addr.2021.114006
  • Yu X, Yang Z, Zhang Y, et al. Lipid nanoparticle delivery of chemically modified NGF(R100W) mRNA alleviates peripheral neuropathy. Adv Healthc Mater. 2023;12(3):e2202127. doi:10.1002/adhm.202202127
  • Tao J, Zhang J, Du T, et al. Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair. Acta Biomater. 2019;90:49–59. doi:10.1016/j.actbio.2019.03.047
  • Jin B, Yu Y, Lou C, et al. Combining a density gradient of biomacromolecular nanoparticles with biological effectors in an electrospun fiber-based nerve guidance conduit to promote peripheral nerve repair. Adv Sci. 2023;10(4):e2203296. doi:10.1002/advs.202203296
  • Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res. 2017;50(8):1976–1987. doi:10.1021/acs.accounts.7b00218
  • De Logu F, Nassini R, Hegron A, et al. Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice. Nat Commun. 2022;13(1):646. doi:10.1038/s41467-022-28204-z
  • Jin L, Ding M, Oklopcic A, et al. Nanoparticle fullerol alleviates radiculopathy via NLRP3 inflammasome and neuropeptides. Nanomedicine. 2017;13(6):2049–2059. doi:10.1016/j.nano.2017.03.015
  • Kim Y, Kong SD, Chen LH, Pisanic TR, Jin S, Shubayev VI. In vivo nanoneurotoxicity screening using oxidative stress and neuroinflammation paradigms. Nanomedicine. 2013;9(7):1057–1066. doi:10.1016/j.nano.2013.05.002
  • Liu H, Qing X, Peng L, et al. Mannose-coated nanozyme for relief from chemotherapy-induced peripheral neuropathic pain. iScience. 2023;26(4):106414. doi:10.1016/j.isci.2023.106414
  • Ding JY, Chen MJ, Wu LF, et al. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil Med Res. 2023;10(1):36. doi:10.1186/s40779-023-00472-w
  • Lopes D, Lopes J, Pereira-Silva M, et al. Bioengineered exosomal-membrane-camouflaged abiotic nanocarriers: neurodegenerative diseases, tissue engineering and regenerative medicine. Mil Med Res. 2023;10(1):19. doi:10.1186/s40779-023-00453-z
  • Brenza TM, Ghaisas S, Ramirez JEV, et al. Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. Nanomedicine. 2017;13(3):809–820. doi:10.1016/j.nano.2016.10.004
  • Li C, Zhao Z, Luo Y, et al. Macrophage-disguised manganese dioxide nanoparticles for neuroprotection by reducing oxidative stress and modulating inflammatory microenvironment in acute ischemic stroke. Adv Sci. 2021;8(20):e2101526.
  • Malko P, Jiang LH. TRPM2 channel-mediated cell death: an important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol. 2020;37:101755. doi:10.1016/j.redox.2020.101755
  • Li X, Han Z, Wang T, et al. Cerium oxide nanoparticles with antioxidative neurorestoration for ischemic stroke. Biomaterials. 2022;291:121904. doi:10.1016/j.biomaterials.2022.121904
  • Yang S, Wang C, Zhu J, et al. Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics. 2020;10(18):8227–8249. doi:10.7150/thno.44276
  • Hu Y, Chen Z, Wang H, et al. Conductive nerve guidance conduits based on morpho butterfly wings for peripheral nerve repair. ACS Nano. 2022;16(2):1868–1879. doi:10.1021/acsnano.1c11627
  • Wu C, Shi L, Ma Y, et al. Construction and optimization of a coculture system of mouse brain microvascular endothelial cells and myelin debris. Neurosci Lett. 2023;811:137345. doi:10.1016/j.neulet.2023.137345
  • Boutary S, Caillaud M, El Madani M, et al. Squalenoyl siRNA PMP22 nanoparticles are effective in treating mouse models of Charcot-Marie-Tooth disease type 1 A. Commun Biol. 2021;4(1):317. doi:10.1038/s42003-021-01839-2
  • Dolkhani S, Najafpour A, Mohammadi R. Fabrication and transplantation of chitosan-selenium biodegradable nanocomposite conduit on transected sciatic nerve: a novel study in rat model. Neurol Res. 2020;42(6):439–450. doi:10.1080/01616412.2019.1709143
  • Giannaccini M, Calatayud MP, Poggetti A, et al. Magnetic nanoparticles for efficient delivery of growth factors: stimulation of peripheral nerve regeneration. Adv Healthc Mater. 2017;6(7). doi:10.1002/adhm.201601429
  • Goncalves NP, Oliveira H, Pego AP, Saraiva MJ. A novel nanoparticle delivery system for in vivo targeting of the sciatic nerve: impact on regeneration. Nanomedicine. 2012;7(8):1167–1180. doi:10.2217/nnm.11.188
  • Roversi K, Tabatabaei M, Desjardins-Lecavalier N, et al. Nanophotonics enable targeted photothermal silencing of nociceptor neurons. Small. 2022;18(14):e2103364. doi:10.1002/smll.202103364
  • Zhang Y, Zhang W, Johnston AH, Newman TA, Pyykko I, Zou J. Targeted delivery of Tet1 peptide functionalized polymersomes to the rat cochlear nerve. Int J Nanomed. 2012;7:1015–1022. doi:10.2147/IJN.S28185
  • Lopes CD, Oliveira H, Estevao I, Pires LR, Pego AP. In vivo targeted gene delivery to peripheral neurons mediated by neurotropic poly(ethylene imine)-based nanoparticles. Int J Nanomed. 2016;11:2675–2683. doi:10.2147/IJN.S104374
  • Du Z, Li M, Ren J, Qu X. Current strategies for modulating abeta aggregation with multifunctional agents. Acc Chem Res. 2021;54(9):2172–2184. doi:10.1021/acs.accounts.1c00055
  • Kargozar S, Singh RK, Kim HW, Baino F. “Hard” ceramics for “Soft” tissue engineering: paradox or opportunity? Acta Biomater. 2020;115:1–28. doi:10.1016/j.actbio.2020.08.014
  • Paviolo C, Stoddart PR. Gold nanoparticles for modulating neuronal behavior. Nanomaterials. 2017;7(4):92. doi:10.3390/nano7040092
  • Escobar A, Reis RL, Oliveira JM. Nanoparticles for neurotrophic factor delivery in nerve guidance conduits for peripheral nerve repair. Nanomedicine. 2022;17(7):477–494. doi:10.2217/nnm-2021-0413