58
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Innovative Vancomycin-Loaded Hydrogel-Based Systems – New Opportunities for the Antibiotic Therapy

ORCID Icon, , & ORCID Icon
Pages 3991-4005 | Received 04 Oct 2023, Accepted 17 Apr 2024, Published online: 03 May 2024

References

  • Moorthy RK, Rajshekhar V. Management of brain abscess: an overview. Neurosurg Focus. 2008;24(6). doi:10.3171/FOC/2008/24/6/E3
  • Xu Z, Xu Z, Gu J, et al. In situ formation of ferrous sulfide in glycyrrhizic acid hydrogels to promote healing of multi-drug resistant Staphylococcus aureus-infected diabetic wounds. J Colloid Interface Sci. 2023;650(May):1918–1929. doi:10.1016/j.jcis.2023.07.141
  • Gisbert-Garzarán M, Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles for the treatment of complex bone diseases: bone cancer, bone infection and osteoporosis. Pharmaceutics. 2020;12(1):83. doi:10.3390/pharmaceutics12010083
  • Manzano M, Colilla M, Vallet-Reg M. Drug delivery from ordered mesoporous matrices. Expert Opin Drug Deliv. 2009;6(12):1383–1400. doi:10.1517/17425240903304024
  • Krasko MY, Golenser J, Nyska A, Nyska M, Brin YS, Domb AJ. Gentamicin extended release from an injectable polymeric implant. J Control Release. 2007;117(1):90–96. doi:10.1016/j.jconrel.2006.10.010
  • El-Kady AM, Kamel NA, Elnashar MM, Farag MM. Production of bioactive glass/chitosan scaffolds by freeze-gelation for optimized vancomycin delivery: effectiveness of glass presence on controlling the drug release kinetics. J Drug Deliv Sci Technol. 2021;66(February):102779. doi:10.1016/j.jddst.2021.102779
  • Loca D, Sokolova M, Locs J, Smirnova A, Irbe Z. Calcium phosphate bone cements for local vancomycin delivery. Mater Sci Eng C. 2015;49(1):106–113. doi:10.1016/j.msec.2014.12.075
  • Mäkinen TJ, Veiranto M, Knuuti J, Jalava J, Törmälä P, Aro HT. Efficacy of bioabsorbable antibiotic containing bone screw in the prevention of biomaterial-related infection due to Staphylococcus aureus. Bone. 2005;36(2):292–299. doi:10.1016/j.bone.2004.11.009
  • Han J, Yang Y, Lu J, et al. Sustained release vancomycin-coated titanium alloy using a novel electrostatic dry powder coating technique may be a potential strategy to reduce implant-related infection. Biosci Trends. 2017;11(3):346–354. doi:10.5582/bst.2017.01061
  • Cevher E, Orhan Z, Mülazimoǧlu L, et al. Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with prepared microspheres. Int J Pharm. 2006;317(2):127–135. doi:10.1016/j.ijpharm.2006.03.014
  • Pai MP, Neely M, Rodvold KA, Lodise TP. Innovative approaches to optimizing the delivery of vancomycin in individual patients. Adv Drug Deliv Rev. 2014;77:50–57. doi:10.1016/j.addr.2014.05.016
  • Davani F, Alishahi M, Sabzi M, Khorram M, Arastehfar A, Zomorodian K. Dual drug delivery of vancomycin and imipenem/cilastatin by coaxial nanofibers for treatment of diabetic foot ulcer infections. Mater Sci Eng C. 2021;123(June 2020):111975. doi:10.1016/j.msec.2021.111975
  • Hassani Besheli N, Mottaghitalab F, Eslami M, et al. Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model. ACS Appl Mater Interfaces. 2017;9(6):5128–5138. doi:10.1021/acsami.6b14912
  • Bruniera FR, Ferreira FM, Saviolli LRM, et al. The use of vancomycin with its therapeutic and adverse effects: a review. Eur Rev Med Pharmacol Sci. 2015;19(4):694–700.
  • Tseng YY, Kao YC, Liao JY, Chen WA, Liu SJ. Biodegradable drug-eluting poly[lactic-co-glycol acid] nanofibers for the sustainable delivery of vancomycin to brain tissue: in vitro and in vivo studies. ACS Chem Neurosci. 2013;4(9):1314–1321. doi:10.1021/cn400108q
  • Unagolla JM, Jayasuriya AC. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur J Pharm Sci. 2018;114:199–209. doi:10.1016/j.ejps.2017.12.012
  • Sahiner N, Suner SS, Ayyala RS. Mesoporous, degradable hyaluronic acid microparticles for sustainable drug delivery application. Colloids Surf B Biointerfaces. 2019;177(November 2018):284–293. doi:10.1016/j.colsurfb.2019.02.015
  • Hassan D, Omolo CA, Fasiku VO, Mocktar C, Govender T. Novel chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (OLA-LPHVs) for delivery of vancomycin against methicillin-resistant Staphylococcus aureus infections. Int J Biol Macromol. 2020;147:385–398. doi:10.1016/j.ijbiomac.2020.01.019
  • Klara J, Lewandowska-Łańcucka J. How efficient are alendronate-nano/biomaterial combinations for anti-osteoporosis therapy? An evidence-based review of the literature. Int J Nanomed. 2022;17(December):6065–6094. doi:10.2147/IJN.S388430
  • Klara J, Onak S, Kowalczyk A, Horak W, Wójcik K, Lewandowska-Łańcucka J. Towards controlling the local bone tissue remodeling—multifunctional injectable composites for osteoporosis treatment. Int J Mol Sci. 2023;24(5):4959. doi:10.3390/ijms24054959
  • Gilarska A, Lewandowska-Łańcucka J, Guzdek-Zając K, et al. Bioactive yet antimicrobial structurally stable collagen/chitosan/lysine functionalized hyaluronic acid – based injectable hydrogels for potential bone tissue engineering applications. Int J Biol Macromol. 2020;155:938–950. doi:10.1016/j.ijbiomac.2019.11.052
  • Klara J, Hinz A, Bzowska M, Horak W, Lewandowska-Łańcucka J. In vitro/ex vivo evaluation of multifunctional collagen/chitosan/hyaluronic acid hydrogel-based alendronate delivery systems. Int J Biol Macromol. 2024;262(Pt 2):130142. doi:10.1016/j.ijbiomac.2024.130142
  • Chuah LH, Billa N, Roberts CJ, Burley JC, Manickam S. Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharm Dev Technol. 2013;18(3):591–599. doi:10.3109/10837450.2011.640688
  • Santos J, Calero N, Trujillo-Cayado LA, Garcia MC, Muñoz J. Assessing differences between Ostwald ripening and coalescence by rheology, laser diffraction and multiple light scattering. Colloids Surf B Biointerfaces. 2017;159:405–411. doi:10.1016/j.colsurfb.2017.08.015
  • Honary S, Ebrahimi P, Hadianamrei R. Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology. Pharm Dev Technol. 2014;19(8):987–998. doi:10.3109/10837450.2013.846375
  • Gilarska A, Lewandowska-Łańcucka J, Horak W, Nowakowska M. Collagen/chitosan/hyaluronic acid – based injectable hydrogels for tissue engineering applications – design, physicochemical and biological characterization. Colloids Surf B Biointerfaces. 2018;170(February):152–162. doi:10.1016/j.colsurfb.2018.06.004
  • Filipowska J, Lewandowska-Łańcucka J, Gilarska A, Niedźwiedzki Ł, Nowakowska M. In vitro osteogenic potential of collagen/chitosan-based hydrogels-silica particles hybrids in human bone marrow-derived mesenchymal stromal cell cultures. Int J Biol Macromol. 2018;113:692–700. doi:10.1016/j.ijbiomac.2018.02.161
  • Bhattacharjee S. DLS and zeta potential - What they are and what they are not? J Control Release. 2016;235:337–351. doi:10.1016/j.jconrel.2016.06.017
  • Martínez R, Navarro Poupard MF, Álvarez A, et al. Nanoparticle behavior and stability in biological environments. Nanopart Biomed Appl. 2019:5–18. doi:10.1016/B978-0-12-816662-8.00002-3
  • Feng J, Shi Y, Yu Q, Sun C, Yang G. Effect of emulsifying process on stability of pesticide nanoemulsions. Colloids Surf a Physicochem Eng Asp. 2016;497:286–292. doi:10.1016/j.colsurfa.2016.03.024
  • Chapeau AL, Tavares GM, Hamon P, Croguennec T, Poncelet D, Bouhallab S. Spontaneous co-assembly of lactoferrin and β-lactoglobulin as a promising biocarrier for vitamin B9. Food Hydrocoll. 2016;57:280–290. doi:10.1016/j.foodhyd.2016.02.003
  • Ninan N, Forget A, Shastri VP, Voelcker NH, Blencowe A. Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl Mater Interfaces. 2016;8(42):28511–28521. doi:10.1021/acsami.6b10491
  • Gilarska A, Hinz A, Bzowska M, et al. Addressing the osteoporosis problem-multifunctional injectable hybrid materials for controlling local bone tissue remodeling. ACS Appl Mater Interfaces. 2021;13(42):49762–49779. doi:10.1021/acsami.1c17472
  • Guzdek-Zając K, Krajcer A, Lewandowska-Łańcucka J, Nowakowska M. Bioactive moist bionanocellulose-based wound dressing material. Appl Surf Sci. 2020;516(March):146108. doi:10.1016/j.apsusc.2020.146108
  • Lewandowska-Łańcucka J, Gilarska A, Buła A, Horak W, Łatkiewicz A, Nowakowska M. Genipin crosslinked bioactive collagen/chitosan/hyaluronic acid injectable hydrogels structurally amended via covalent attachment of surface-modified silica particles. Int J Biol Macromol. 2019;136:1196–1208. doi:10.1016/j.ijbiomac.2019.06.184
  • Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):1–18. doi:10.1038/natrevmats.2016.71
  • Kanj WW, Flynn JM, Spiegel DA, Dormans JP, Baldwin KD. Vancomycin prophylaxis of surgical site infection in clean orthopedic surgery. Orthopedics. 2013;36(2):138–146. doi:10.3928/01477447-20130122-10
  • Bakhsheshi-Rad HR, Hamzah E, Ismail AF, et al. Novel nanostructured baghdadite-vancomycin scaffolds: in-vitro drug release, antibacterial activity and biocompatibility. Mater Lett. 2017;209:369–372. doi:10.1016/j.matlet.2017.08.027
  • Parent M, Magnaudeix A, Delebassée S, et al. Hydroxyapatite microporous bioceramics as vancomycin reservoir: antibacterial efficiency and biocompatibility investigation. J Biomater Appl. 2016;31(4):488–498. doi:10.1177/0885328216653108