44
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

ULK1 Mediated Autophagy-Promoting Effects of Rutin-Loaded Chitosan Nanoparticles Contribute to the Activation of NF-κB Signaling Besides Inhibiting EMT in Hep3B Hepatoma Cells

, ORCID Icon, ORCID Icon, , , , , ORCID Icon & show all
Pages 4465-4493 | Received 04 Oct 2023, Accepted 08 May 2024, Published online: 18 May 2024

References

  • Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31(1):100–110. doi:10.1093/carcin/bgp263
  • Oh JH, Jun DW. The latest global burden of liver cancer: a past and present threat. Clin Mol Hepatol. 2023;29(2):355–357. doi:10.3350/cmh.2023.0070
  • Rumgay H, Arnold M, Ferlay J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 2022;77(6):1598–1606. doi:10.1016/j.jhep.2022.08.021
  • Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. Ca a Cancer J Clinicians. 2023;73(1):17–48. doi:10.3322/caac.21763
  • Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022;135(5):584–590. doi:10.1097/CM9.0000000000002108
  • Raza A, Sood GK. Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World J Gastroenterol. 2014;20(15):4115–4127. doi:10.3748/wjg.v20.i15.4115
  • Psilopatis I, Damaskos C, Garmpi A, et al. FDA-approved monoclonal antibodies for unresectable hepatocellular carcinoma: what do we know so far? Int J Mol Sci. 2023;24(3):2685. doi:10.3390/ijms24032685
  • Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1):7. doi:10.1038/s41392-017-0004-3
  • Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions. AAPS Pharm Sci Tech. 2014;15(4):822–833. doi:10.1208/s12249-014-0107-x
  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71. doi:10.1186/s12951-018-0392-8
  • Prasad M, Lambe UP, Brar B, et al. Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother. 2018;97:1521–1537. doi:10.1016/j.biopha.2017.11.026
  • Yadav P, Bandyopadhyay A, Chakraborty A, Sarkar K. Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis. Carbohydr Polym. 2018;182:188–198. doi:10.1016/j.carbpol.2017.10.102
  • Witika BA, Makoni PA, Matafwali SK, et al. Biocompatibility of biomaterials for nanoencapsulation: current approaches. Nanomaterials. 2020;10(9):1649. doi:10.3390/nano10091649
  • Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):53. doi:10.3390/pharmaceutics9040053
  • Yanat M, Schroën K. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. React Funct Polym. 2021;161:104849. doi:10.1016/j.reactfunctpolym.2021.104849
  • Sachdeva B, Sachdeva P, Negi A, et al. Chitosan nanoparticles-based cancer drug delivery: application and challenges. Mar Drugs. 2023;21(4):211. doi:10.3390/md21040211
  • Loutfy SA, El-Din HMA, Elberry MH, Allam NG, Hasanin M, Abdellah AM. Synthesis, characterization and cytotoxic evaluation of chitosan nanoparticles: in vitro liver cancer model. Adv Nat Sci. 2016;7(3):035008.
  • Quagliariello V, Masarone M, Armenia E, et al. Chitosan-coated liposomes loaded with butyric acid demonstrate anticancer and anti-inflammatory activity in human hepatoma HepG2 cells. Oncol Rep. 2019;41(3):1476–1486. doi:10.3892/or.2018.6932
  • Pan Q, Lv Y, Williams GR, et al. Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems. Carbohydr Polym. 2016;151:812–820. doi:10.1016/j.carbpol.2016.06.024
  • Qi X, Rui Y, Fan Y, Chen H, Ma N, Wu Z. Galactosylated chitosan-grafted multiwall carbon nanotubes for pH-dependent sustained release and hepatic tumor-targeted delivery of doxorubicin in vivo. Colloids Surf B. 2015;133:314–322. doi:10.1016/j.colsurfb.2015.06.003
  • Chavda VP, Balar PC, Patel SB. Interventional nanotheranostics in hepatocellular carcinoma. Nanotheranostics. 2023;7(2):128. doi:10.7150/ntno.80120
  • B-l Y, Zheng R, Ruan X-J, Zheng Z-H, Cai H-J. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway. Biochem. Biophys. Res. Commun. 2018;495(1):414–420. doi:10.1016/j.bbrc.2017.10.156
  • Mintz KJ, Leblanc RM. The use of nanotechnology to combat liver cancer: progress and perspectives. Bioch et Bioph Acta. 2021;1876(2):188621. doi:10.1016/j.bbcan.2021.188621
  • Bonferoni MC, Gavini E, Rassu G, Maestri M, Giunchedi P. Chitosan Nanoparticles for Therapy and Theranostics of Hepatocellular Carcinoma (HCC) and Liver-Targeting. Nanomaterials Basel. 2020;10(5):870. doi:10.3390/nano10050870
  • Guadarrama-Escobar OR, Serrano-Castañeda P, Anguiano-Almazán E, et al. Chitosan nanoparticles as oral drug carriers. Int J Mol Sci. 2023;24(5):4289. doi:10.3390/ijms24054289
  • Fathi M, Zangabad PS, Majidi S, Barar J, Erfan-Niya H, Omidi Y. Stimuli-responsive chitosan-based nanocarriers for cancer therapy. Bioimpacts. 2017;7(4):269. doi:10.15171/bi.2017.32
  • Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharmac J. 2017;25(2):149–164. doi:10.1016/j.jsps.2016.04.025
  • Vachirapatama N, Chamna B. Separation and determination of rutin in apples by high performance liquid chromatography. Sci Technol Asia. 2012;2012:27–33.
  • Vachirapatama N, Chamnankid B, Kachonpadungkitti Y. Determination of rutin in buckwheat tea and Fagopyrum tataricum seeds by high performance liquid chromatography and capillary electrophoresis. Journal of Food and Drug Analysis. 2011;19(4):18.
  • Pandey P, Khan F, Qari HA, Oves M. Rutin (Bioflavonoid) as cell signaling pathway modulator: prospects in treatment and chemoprevention. Pharmaceuticals. 2021;14(11):1069. doi:10.3390/ph14111069
  • Qanash H, Al-Rajhi AMH, Almashjary MN, Basabrain AA, Hazzazi MS, Abdelghany TM. Inhibitory potential of rutin and rutin nano-crystals against Helicobacter pylori, colon cancer, hemolysis and Butyrylcholinesterase in vitro and in silico. Appl Biol Chem. 2023;66(1):79. doi:10.1186/s13765-023-00832-z
  • Semwal R, Joshi SK, Semwal RB, Semwal DK. Health benefits and limitations of rutin - A natural flavonoid with high nutraceutical value. Phytochem Lett. 2021;46:119–128. doi:10.1016/j.phytol.2021.10.006
  • Nouri Z, Fakhri S, Nouri K, Wallace CE, Farzaei MH, Bishayee A. Targeting multiple signaling pathways in cancer: the rutin therapeutic approach. Cancers. 2020;12(8):2276. doi:10.3390/cancers12082276
  • Aydin RST, Pulat M. 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater. 2012;2012:42–42.
  • Naeem A, Yu C, Zang Z, Zhu W, Deng X, Guan Y. Synthesis and evaluation of rutin-hydroxypropyl β-cyclodextrin inclusion complexes embedded in xanthan gum-based (HPMC-g-AMPS) hydrogels for oral controlled drug delivery. Antioxidants. 2023;12(3). doi:10.3390/antiox12030552
  • Luo S, Fu Y, Ye J, Liu C. Encapsulation of rutin in protein nanoparticles by pH‐driven method: impact of rutin solubility and mechanisms. J Sci Food Agric. 2024;104(3):1804–1812. doi:10.1002/jsfa.13068
  • Satari A, Ghasemi S, Habtemariam S, Asgharian S, Lorigooini Z. Rutin: a flavonoid as an effective sensitizer for anticancer therapy; insights into multifaceted mechanisms and applicability for combination therapy. Evid Based Complement Alternat Med. 2021;2021. doi:10.1155/2021/9913179
  • Han Y, Wang L, Jiang W, et al. An enhanced stability nanoparticle preparation by corn protein hydrolysate‐carboxymethyl chitosan Maillard conjugates loaded with rutin. Journal of Food Science. 2019;84(7):1829–1835. doi:10.1111/1750-3841.14616
  • Ahmad N, Ahmad R, Naqvi AA, et al. Quantification of rutin in rat’s brain by UHPLC/ESI-Q-TOF-MS/MS after intranasal administration of rutin loaded chitosan nanoparticles. EXCLI J. 2016;15:518. doi:10.17179/excli2016-361
  • Ramaswamy S, Dwarampudi LP, Kadiyala M, et al. Formulation and characterization of chitosan encapsulated phytoconstituents of curcumin and rutin nanoparticles. Int J Biol Macromol. 2017;104:1807–1812. doi:10.1016/j.ijbiomac.2017.06.112
  • Chang C, Zhang L, Miao Y, Fang B, Yang Z. Anticancer and apoptotic-inducing effects of rutin-chitosan nanoconjugates in triple negative breast cancer cells. Journal of Cluster Science. 2021;32(2):331–340. doi:10.1007/s10876-020-01792-w
  • Devi KR, Paulraj SJ, Shah Y, Kumar SR, Kejamurthy P. Chitosan-tripolyphosphate nanoparticles encapsulated rutin targeting bacterial growth inhibition and its cytotoxicity on PANC-1 pancreatic adenocarcinoma cell. J Appl Pharm Sci. 2023;13(4):141–148.
  • Ahmad N, Ahmad R, Naqvi AA, et al. Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of Cerebral Ischemia. Int J Biol Macromol. 2016;91:640–655. doi:10.1016/j.ijbiomac.2016.06.001
  • Cosco D, Failla P, Costa N, et al. Rutin-loaded chitosan microspheres: characterization and evaluation of the anti-inflammatory activity. Carbohydr Polym. 2016;152:583–591. doi:10.1016/j.carbpol.2016.06.039
  • Nandana CN, Christeena M, Bharathi D. Synthesis and characterization of chitosan/silver nanocomposite using rutin for antibacterial, antioxidant and photocatalytic applications. Journal of Cluster Science. 2021;33:1–11.
  • Sionkowska A, Lewandowska K, Kurzawa M. Chitosan-based films containing rutin for potential cosmetic applications. Polymers. 2023;15(15):3224. doi:10.3390/polym15153224
  • Tran NQ, Joung YK, Lih E, Park KD. In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules. 2011;12(8):2872–2880. doi:10.1021/bm200326g
  • Abhishek Singh T, Sadhukhan P, Ghosh N, et al. Targeted delivery of rutin into breast cancer cells via using phenylboronic acid functionalized MgO nanoparticles. Materials Science and Engineering: B. 2023;296:116623. doi:10.1016/j.mseb.2023.116623
  • Li Y, Guo J, Gong X, et al. Inhibitory effects of platinum nanoparticles coated with polyethylene glycol and conjugated with Rutin on the MCF-7 breast cancer cell line. Arabian J Chem. 2024;17(3):105567. doi:10.1016/j.arabjc.2023.105567
  • Sathiyaseelan A, Saravanakumar K, Manivasagan P, Jeong MS, Jang E-S, Wang M-H. Folic acid conjugated chitosan encapsulated palladium nanoclusters for NIR triggered photothermal breast cancer treatment. Carbohydr Polym. 2022;280:119021. doi:10.1016/j.carbpol.2021.119021
  • Paudel KR, Wadhwa R, Tew XN, et al. Rutin loaded liquid crystalline nanoparticles inhibit non-small cell lung cancer proliferation and migration in vitro. Life Sci. 2021;276:119436. doi:10.1016/j.lfs.2021.119436
  • Hoai TT, Yen PT, Dao TTB, et al. Evaluation of the cytotoxic effect of rutin prenanoemulsion in lung and colon cancer cell lines. J Nanomater. 2020;2020:1–11. doi:10.1155/2020/8867669
  • Caparica R, Júlio A, Araújo MEM, et al. Anticancer Activity of Rutin and Its Combination with Ionic Liquids on Renal Cells. Biomolecules. 2020;10(2):233. doi:10.3390/biom10020233
  • Memar MY, Dalir Abdolahinia E, Yekani M, Kouhsoltani M, Sharifi S, Maleki Dizaj S. Preparation of rutin-loaded mesoporous silica nanoparticles and evaluation of its physicochemical, anticancer, and antibacterial properties. Mol Bio Rep. 2023;50(1):203–213. doi:10.1007/s11033-022-07953-6
  • Al‐Ekaid NM, Al‐Samydai A, Al‐deeb I, Nsairat H, Khleifat K, Alshaer W. Preparation, characterization, and anticancer activity of pegylated nano liposomal loaded with rutin against human carcinoma cells (HT‐29). Chem Biodivers. 2023;20(11):e202301167. doi:10.1002/cbdv.202301167
  • Kunjiappan S, Panneerselvam T, Somasundaram B, et al. Design, in silico modeling, biodistribution study of rutin and quercetin loaded stable human hair keratin nanoparticles intended for anticancer drug delivery. Biomed Phys Eng Express. 2018;4(2):025019. doi:10.1088/2057-1976/aaa1cf
  • Pandian SRK, Pavadai P, Vellaisamy S, et al. Formulation and evaluation of rutin-loaded solid lipid nanoparticles for the treatment of brain tumor. Naunyn-Schmiedeberg’s Arch Pharmacol. 2021;394:735–749. doi:10.1007/s00210-020-02015-9
  • AbouSamra MM, Afifi SM, Galal AF, Kamel R. Rutin-loaded Phyto-Sterosomes as a potential approach for the treatment of hepatocellular carcinoma: in-vitro and in-vivo studies. J Drug Delivery Sci Technol. 2023;79:104015. doi:10.1016/j.jddst.2022.104015
  • Pandey P, Rahman M, Bhatt PC, et al. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine. 2018;13(8):849–870. doi:10.2217/nnm-2017-0306
  • Abbasi M, Gholizadeh R, Kasaee SR, et al. An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver. Sci Rep. 2023;13(1):5987. doi:10.1038/s41598-023-33095-1
  • Memar MY, Yekani M, Sharifi S, Dizaj SM. Antibacterial and biofilm inhibitory effects of rutin nanocrystals. Biointerface Res Appl Chem. 2022;13:132.
  • Abhishek Singh T, Kundu M, Chatterjee S, et al. Synthesis of Rutin loaded nanomagnesia as a smart nanoformulation with significant antibacterial and antioxidant properties. Inorg Chem Commun. 2022;140:109492. doi:10.1016/j.inoche.2022.109492
  • Kamel R, Mostafa DM. Rutin nanostructured lipid cosmeceutical preparation with sun protective potential. J Photochem Photobiol B Biol. 2015;153:59–66. doi:10.1016/j.jphotobiol.2015.09.002
  • Mohamed KM, Abdelfattah MS, El-khadragy M, et al. Rutin-loaded selenium nanoparticles modulated the redox status, inflammatory, and apoptotic pathways associated with pentylenetetrazole-induced epilepsy in mice. Green Processing and Synthesis. 2023;12(1):20230010. doi:10.1515/gps-2023-0010
  • Çetin FK, Ateş SC. In vitro investigation of Rutin-loaded PLGA nanoparticles on leishmania infantum promastigotes. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2022;26(3):427–434. doi:10.19113/sdufenbed.1074029
  • Surendran V, Palei NN. Formulation and characterization of rutin loaded chitosan-alginate nanoparticles: antidiabetic and cytotoxicity studies. Current Drug Delivery. 2022;19(3):379–394. doi:10.2174/1567201818666211005090656
  • Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 2004;339(16):2693–2700. doi:10.1016/j.carres.2004.09.007
  • Lu E, Franzblau S, Onyuksel H, Popescu C. Preparation of aminoglycoside-loaded chitosan nanoparticles using dextran sulphate as a counterion. J Microencapsul. 2009;26(4):346–354. doi:10.1080/02652040802365182
  • Siva D, Abinaya S, Rajesh D, et al. Mollification of doxorubicin (DOX)-mediated cardiotoxicity using conjugated chitosan nanoparticles with supplementation of propionic acid. Nanomaterials. 2022;12(3):502. doi:10.3390/nano12030502
  • Al-Kassas R, Wen J, Cheng AE-M, Kim AM-J, Liu SSM, Yu J. Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carbohydr Polym. 2016;153:176–186. doi:10.1016/j.carbpol.2016.06.096
  • Kouchak M, Azarpanah A. Preparation and in vitro evaluation of chitosan nanoparticles containing diclofenac using the ion-gelation method. Jundishapur J Nat Pharm Prod. 2015;10(2):e23082. doi:10.17795/jjnpp-23082
  • Hafizi T, Shahriari MH, Abdouss M, Kahdestani SA. Synthesis and characterization of vancomycin-loaded chitosan nanoparticles for drug delivery. Polym Bull. 2023;80(5):5607–5621. doi:10.1007/s00289-022-04237-8
  • Kiaie N, Aghdam RM, Tafti SH, Emami SH. Statistical optimization of chitosan nanoparticles as protein vehicles, using response surface methodology. J Appl Biomat Funct Mat. 2016;14(4):413–422. doi:10.5301/jabfm.5000278
  • Simpson E, Sarwar H, Jack I, Lowry D. Evaluation of the potential of chitosan nanoparticles as a delivery vehicle for gentamicin for the treatment of osteomyelitis. Antibiotics. 2024;13(3):208. doi:10.3390/antibiotics13030208
  • Bahreini E, Aghaiypour K, Abbasalipourkabir R, Mokarram AR, Goodarzi MT, Saidijam M. Preparation and nanoencapsulation of l-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale Res Lett. 2014;9(1):340. doi:10.1186/1556-276X-9-340
  • Calvo P, Remunan‐Lopez C, Vila‐Jato JL, Alonso M. Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125–132. doi:10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4
  • Sreekumar S, Goycoolea FM, Moerschbacher BM, Rivera-Rodriguez GR. Parameters influencing the size of chitosan-TPP nano- and microparticles. Sci Rep. 2018;8(1):4695. doi:10.1038/s41598-018-23064-4
  • Ways TMM, Filippov SK, Maji S, et al. Mucus-penetrating nanoparticles based on chitosan grafted with various non-ionic polymers: synthesis, structural characterisation and diffusion studies. J Colloid Interface Sci. 2022;626:251–264. doi:10.1016/j.jcis.2022.06.126
  • Di Martino A, Kucharczyk P, Capakova Z, Humpolicek P, Sedlarik V. Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles. J Nanopart Res. 2017;19(2):71. doi:10.1007/s11051-017-3756-3
  • Bozkir A, Saka OM. Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Delivery. 2004;11(2):107–112. doi:10.1080/10717540490280705
  • Gregoriou Y, Gregoriou G, Yilmaz V, et al. Resveratrol loaded polymeric micelles for theranostic targeting of breast cancer cells. Nanotheranostics. 2021;5(1):113–124. doi:10.7150/ntno.51955
  • Wadher K, Trivedi S, Rarokar N, Umekar M. Development and assessment of rutin loaded transfersomes to improve ex vivo membrane permeability and in vitro efficacy. Hybrid Advances. 2024;5:100144. doi:10.1016/j.hybadv.2024.100144
  • Alam MS, Sultana N, Rashid MA, et al. Quality by design-optimized glycerosome-enabled nanosunscreen gel of rutin hydrate. Gels. 2023;9(9):752. doi:10.3390/gels9090752
  • Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: a promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics. 2020;12(9):855. doi:10.3390/pharmaceutics12090855
  • Ramachandran R, Shanmughavel P. Preparation and characterization of biopolymeric nanoparticles used in drug delivery. Indian J Bioch BIoph. 2010;47:56–59.
  • Khadke S, Roces CB, Donaghey R, Giacobbo V, Su Y, Perrie Y. Scalable solvent-free production of liposomes. J Pharm Pharmacol. 2020;72(10):1328–1340. doi:10.1111/jphp.13329
  • Teng Z, Yu M, Ding Y, et al. Preparation and characterization of nimodipine-loaded nanostructured lipid systems for enhanced solubility and bioavailability. Int j Nanomed. 2019;14:119–133. doi:10.2147/IJN.S186899
  • Sultan MH, Moni SS, Madkhali OA, et al. Characterization of cisplatin-loaded chitosan nanoparticles and rituximab-linked surfaces as target-specific injectable nano-formulations for combating cancer. Sci Rep. 2022;12(1):468. doi:10.1038/s41598-021-04427-w
  • Singh A, Kar AK, Singh D, et al. pH-responsive eco-friendly chitosan modified cenosphere/alginate composite hydrogel beads as carrier for controlled release of Imidacloprid towards sustainable pest control. Chem Eng J. 2022;427:131215. doi:10.1016/j.cej.2021.131215
  • Anitha A, Maya S, Deepa N, et al. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr Polym. 2011;83(2):452–461. doi:10.1016/j.carbpol.2010.08.008
  • Florento L, Matias R, Tuaño E, Santiago K, Dela Cruz F, Tuazon A. Comparison of cytotoxic activity of anticancer drugs against various human tumor cell lines using in vitro cell-based approach. Int j Biomed Sci. 2012;8(1):76. doi:10.59566/IJBS.2012.8076
  • Biswas R, Mondal A, Chatterjee S, Ahn J. Evaluation of synergistic effects of sulforaphene with photodynamic therapy in human cervical cancer cell line. Lasers Med Sci. 2016;31(8):1675–1682. doi:10.1007/s10103-016-2037-1
  • Jakic B, Buszko M, Cappellano G, Wick G. Elevated sodium leads to the increased expression of HSP60 and induces apoptosis in HUVECs. PLoS One. 2017;12(6):e0179383. doi:10.1371/journal.pone.0179383
  • Ling L, Tan K, Lin H, Chiu G. The role of reactive oxygen species and autophagy in safingol-induced cell death. Cell Death Dis. 2011;2(3):e129–e129. doi:10.1038/cddis.2011.12
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262
  • Hou Z, Zhan C, Jiang Q, et al. Both FA-and mPEG-conjugated chitosan nanoparticles for targeted cellular uptake and enhanced tumor tissue distribution. Nanoscale Res Lett. 2011;6:1–11. doi:10.1186/1556-276X-6-563
  • Seisel Q, Pelletier F, Deshayes S, Boisguerin P. How to evaluate the cellular uptake of CPPs with fluorescence techniques: dissecting methodological pitfalls associated to tryptophan-rich peptides. Bioch et Bioph Acta. 2019;1861(9):1533–1545. doi:10.1016/j.bbamem.2019.06.011
  • Shahjahan A, Sekar S, Kasinathan K, ArulJothi KN. The cytotoxic and anti-tumor potential of methanolic extracts of Indian marine isolates in HCT116 colorectal cancer cells. Anti Can Agent Med Chem. 2023;23(17):1974–1981.
  • Cocean G, Cocean A, Postolachi C, Garofalide S, Bulai G. High-power laser deposition of chitosan polymers: medical and environmental applications. Polymers. 2022;14(8):1537. doi:10.3390/polym14081537
  • El-Naggar NE-A, Shiha AM, Mahrous H, Mohammed ABA. Green synthesis of chitosan nanoparticles, optimization, characterization and antibacterial efficacy against multi drug resistant biofilm-forming Acinetobacter baumannii. Sci Rep. 2022;12(1):19869. doi:10.1038/s41598-022-24303-5
  • Yahya R, Al-Rajhi AMH, Alzaid SZ, et al. Molecular docking and efficacy of aloe vera gel based on chitosan nanoparticles against helicobacter pylori and its antioxidant and anti-inflammatory activities. Polymers. 2022;14(15):2994. doi:10.3390/polym14152994
  • Duraisamy N, Dhayalan S, Shaik MR, Shaik AH, Shaik JP, Shaik B. Green synthesis of chitosan nanoparticles using of martynia annua l. ethanol leaf extract and their antibacterial activity. Crystals. 2022;12(11):1550. doi:10.3390/cryst12111550
  • Abualhasan MN, Mansour J, Jaradat N, Zaid AN, Khadra I. Formulation and development of a validated UV-spectrophotometric analytical method of rutin tablet. Int Scholarly Res Notices. 2017;2017:1–7. doi:10.1155/2017/2624947
  • Ganesan S, Alagarasan JK, Sonaimuthu M, et al. Preparation and characterization of salsalate-loaded chitosan nanoparticles: in vitro release and antibacterial and antibiofilm activity. Mar Drugs. 2022;20(12):733. doi:10.3390/md20120733
  • Chen D, Liu Y, Liu P, Zhou Y, Jiang L. Orally delivered rutin in lipid-based nano-formulation exerts strong antithrombotic effects by protein disulfide isomerase inhibition. Drug Delivery. 2022;29(1):1824–1835. doi:10.1080/10717544.2022.2083726
  • Kızılbey K. Optimization of rutin-loaded PLGA nanoparticles synthesized by single-emulsion solvent evaporation method. Acs Omega. 2019;4(1):555–562. doi:10.1021/acsomega.8b02767
  • Ciro Y, Rojas J, Di Virgilio AL, Alhajj MJ, Carabali GA, Salamanca CH. Production, physicochemical characterization, and anticancer activity of methotrexate-loaded phytic acid-chitosan nanoparticles on HT-29 human colon adenocarcinoma cells. Carbohydr Polym. 2020;243:116436. doi:10.1016/j.carbpol.2020.116436
  • Choudhary RC, Kumari S, Kumaraswamy R, et al. Characterization methods for chitosan-based nanomaterials. Plant Nanobionics. 2019;1:103–116.
  • Lustriane C, Dwivany FM, Suendo V, Reza M. Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. J Plant Biotechnol. 2018;45(1):36–44. doi:10.5010/JPB.2018.45.1.036
  • Thai H, Thuy Nguyen C, Thi Thach L, et al. Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo. Sci Rep. 2020;10(1):1–15. doi:10.1038/s41598-020-57666-8
  • Goodarzi A, Khanmohammadi M, Ebrahimi-Barough S, et al. Alginate-based hydrogel containing taurine-loaded chitosan nanoparticles in biomedical application. Arch Neurosci. 2019;6(2):1.
  • Kain D, Kumar S. Synthesis and characterization of chitosan nanoparticles of Achillea millefolium L. and their activities. F1000Research. 2020;9:1297. doi:10.12688/f1000research.26446.1
  • Mahmood MA, Madni A. Ionically cross-linked chitosan nanoparticles for sustained delivery of docetaxel: fabrication. Post-Formul Acute Oral Toxicity Eval. 2019;14:10035–10046.
  • El-Houssiny A, Ward A, Mostafa D, et al. Drug–polymer interaction between glucosamine sulfate and alginate nanoparticles: FTIR, DSC and dielectric spectroscopy studies. Adv Nat Sci. 2016;7(2):025014.
  • Ahmad N, Khan MR, Palanisamy S, Mohandoss S. Anticancer drug-loaded chitosan nanoparticles for in vitro release, promoting antibacterial and anticancer activities. Polymers. 2023;15(19):3925. doi:10.3390/polym15193925
  • IAd L, Khalil NM, Mainardes RM. A stability-indicating HPLC-PDA method for the determination of ferulic acid in chitosan-coated poly (lactide-co-glycolide) nanoparticles. Braz J Pharm Sci. 2017;2017:53.
  • Pramod K, Ilyas UK, Kamal YT, Ahmad S, Ansari SH, Ali J. Development and validation of RP-HPLC-PDA method for the quantification of eugenol in developed nanoemulsion gel and nanoparticles. J Anal Sci Technol. 2013;4(1):16. doi:10.1186/2093-3371-4-16
  • Güven UM, Berkman MS, Yazan Y. Development and validation of UPLC method for the determination of olopatadine hydrochloride in polymeric nanoparticles. Acta Pharm Sci. 2019;57:7–18.
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi:10.3390/pharmaceutics10020057
  • Li C, Chen L, McClements DJ, et al. Preparation and characterization of rutin–loaded zein–carboxymethyl starch nanoparticles. Foods. 2022;11(18):2827. doi:10.3390/foods11182827
  • Saha S, Mishra A. A facile preparation of rutin nanoparticles and its effects on controlled growth and morphology of calcium oxalate crystals. Journal of Crystal Growth. 2020;540:125635. doi:10.1016/j.jcrysgro.2020.125635
  • AbdElrazek DA, Hassan NH, Ibrahim MA, Hassanen EI, Farroh KY, Abass HI. Ameliorative effects of rutin and rutin-loaded chitosan nanoparticles on testicular oxidative stress and histological damage induced by cyclophosphamide in male rats. Food and Chemical Toxicology. 2024;184:114436. doi:10.1016/j.fct.2024.114436
  • Sri KV, Santhoshini G, Sankar DR, Niharika K. Formulation and evaluation of rutin loaded nanosponges. Asian J Res Pharmac Sci. 2018;8(1):21–24. doi:10.5958/2231-5659.2018.00005.X
  • Ardani H, Imawan C, Handayani W, Djuhana D, Harmoko A, Fauzia V Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. leaves using polyvinyl alcohol. Paper presented at: IOP Conference Series: Materials Science and Engineering; 2017.
  • Maguire CM, Rösslein M, Wick P, Prina-Mello A. Characterisation of particles in solution–a perspective on light scattering and comparative technologies. Sci Technol Adv Mater. 2018;19(1):732–745. doi:10.1080/14686996.2018.1517587
  • Erdogan O, Abbak M, Demirbolat GM, et al. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: the characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One. 2019;14(6):e0216496. doi:10.1371/journal.pone.0216496
  • Wen X, Wang Q, Dai T, et al. Identification of possible reductants in the aqueous leaf extract of mangrove plant Rhizophora apiculata for the fabrication and cytotoxicity of silver nanoparticles against human osteosarcoma MG-63 cells. Mater Sci Eng C. 2020;116:111252. doi:10.1016/j.msec.2020.111252
  • Sangwan S, Seth R. Nanotechnology: a boon in cancer therapy. Internat J Nanomat. 2021;7(1):001–006.
  • Lo Presti E, Pizzolato G, Corsale AM, et al. γδ T Cells and Tumor Microenvironment: from Immunosurveillance to Tumor Evasion. Front Immunol. 2018;9:1395–1395. doi:10.3389/fimmu.2018.01395
  • Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond). 2013;8(9):1509–1528. doi:10.2217/nnm.13.118
  • Jose Chirayil C, Abraham J, Kumar Mishra R, George SC, Thomas S. Chapter 1 - Instrumental Techniques for the Characterization of Nanoparticles. In: Thomas S, Thomas R, Zachariah AK, Mishra RK, editors. Thermal and Rheological Measurement Techniques for Nanomaterials Characterization. Elsevier; 2017:1–36.
  • Clogston JD, Patri AK. Zeta potential measurement. Meth Mol Bio. 2011;697:63–70.
  • Lu Y, Qi J, Wu W. Chapter 20 - Lipid nanoparticles: in vitro and in vivo approaches in drug delivery and targeting. In: Grumezescu AM, editor. Drug Targeting and Stimuli Sensitive Drug Delivery Systems. William Andrew Publishing; 2018:749–783.
  • Aibani N, Rai R, Patel P. Chitosan nanoparticles at the biological interface: implications for drug delivery. Antioxidants. 2021;13(10):1.
  • Piras AM, Maisetta G, Sandreschi S, et al. Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Front Microbiol. 2015;6:372. doi:10.3389/fmicb.2015.00372
  • Soltanzadeh M, Peighambardoust SH, Ghanbarzadeh B, Mohammadi M, Lorenzo JM. Chitosan nanoparticles as a promising nanomaterial for encapsulation of pomegranate (Punica granatum L.) peel extract as a natural source of antioxidants. Nanomaterials. 2021;11(6):1439. doi:10.3390/nano11061439
  • Vogel R, Pal AK, Jambhrunkar S, et al. High-resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing. Sci Rep. 2017;7(1):17479. doi:10.1038/s41598-017-14981-x
  • Zhang L, Hu Y. Alphastatin-loaded chitosan nanoparticle preparation and its antiangiogenic effect on lung carcinoma. Int J Polym Sci. 2019;2019:1–9. doi:10.1155/2019/2751384
  • Chigumira W, Maposa P, Gadaga LL, Dube A, Tagwireyi D, Maponga CC. Preparation and evaluation of pralidoxime-loaded PLGA nanoparticles as potential carriers of the drug across the blood brain barrier. J Nanomater. 2015;2015:8–8. doi:10.1155/2015/692672
  • Liu X, Shan K, Shao X, et al. Nanotoxic effects of silver nanoparticles on normal HEK-293 cells in comparison to cancerous hela cell line. Int j Nanomed. 2021;16:753. doi:10.2147/IJN.S289008
  • Kaasalainen M, Aseyev V, von Haartman E, et al. Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Res Lett. 2017;12(1):74. doi:10.1186/s11671-017-1853-y
  • Yang G, Liu Y, Wang H, et al. Bioinspired core–shell nanoparticles for hydrophobic drug delivery. Angew. Chem. Int. Ed. 2019;58(40):14357–14364. doi:10.1002/anie.201908357
  • De Gaetano F, Cristiano MC, Venuti V, et al. Rutin-loaded solid lipid nanoparticles: characterization and in vitro evaluation. Molecules. 2021;26(4):1039. doi:10.3390/molecules26041039
  • Agrahari V, Youan -B-BC. Sensitive and rapid HPLC quantification of tenofovir from hyaluronic acid-based nanomedicine. AAPS Pharm Sci Tech. 2012;13:202–210. doi:10.1208/s12249-011-9735-6
  • Vigata M, Meinert C, Hutmacher DW, Bock N. Hydrogels as drug delivery systems: a review of current characterization and evaluation techniques. Pharmaceutics. 2020;12(12):1188. doi:10.3390/pharmaceutics12121188
  • Herrera M, Cantos J, Muñoz K, Durán J, Vinueza J, Dos Santos FK. Validation of analytical method by UV spectrophotometric quantification of gemfibrozil incorporated in the microemulsions. infoANALÍTICA. 2021;9(1):137–150. doi:10.26807/ia.v9i1.195
  • Libánská A, Špringer T, Peštová L, et al. Using surface plasmon resonance, capillary electrophoresis and diffusion-ordered NMR spectroscopy to study drug release kinetics. Commun. Chem. 2023;6(1):180. doi:10.1038/s42004-023-00992-5
  • Dhole SM, Amnerkar ND, Khedekar PB. Comparison of UV spectrophotometry and high performance liquid chromatography methods for the determination of repaglinide in tablets. Pharm Methods. 2012;3(2):68–72. doi:10.4103/2229-4708.103875
  • Wang Q, Wang G, Xie S, Zhao X, Zhang Y. Comparison of high‑performance liquid chromatography and ultraviolet‑visible spectrophotometry to determine the best method to assess Levofloxacin released from mesoporous silica microspheres/nano‑hydroxyapatite composite scaffolds. Exp Ther Med. 2019;17(4):2694–2702. doi:10.3892/etm.2019.7238
  • Dahiya P, Zafar A, Ahmad FJ, Khalid M, Ali A. Development of Forskolin and rutin-loaded polymeric nanoparticles for enhancement of topical ocular delivery: optimization, in-vitro, ex-vivo, and toxicity evaluation. J Drug Delivery Sci Technol. 2023;82:104292. doi:10.1016/j.jddst.2023.104292
  • Yoshida T, Lai TC, Kwon GS, Sako K. pH- and ion-sensitive polymers for drug delivery. Expert Opin Drug Delivery. 2013;10(11):1497–1513. doi:10.1517/17425247.2013.821978
  • Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(5). doi:10.1002/wnan.1450
  • AlSawaftah NM, Awad NS, Pitt WG, Husseini GA. pH-responsive nanocarriers in cancer therapy. Polymers. 2022;14(5):936. doi:10.3390/polym14050936
  • Yue H, Gou L, Tang Z, Liu Y, Liu S, Tang H. Construction of pH-responsive nanocarriers in combination with ferroptosis and chemotherapy for treatment of hepatocellular carcinoma. Cancer Nanotechnol. 2022;13(1):4. doi:10.1186/s12645-022-00111-4
  • Dhawa T, Hazra A, Barma A, Pal K, Karmakar P, Roy P. 4-Methyl-2, 6-diformylphenol based biocompatible chemosensors for pH: discrimination between normal cells and cancer cells. RSC Adv. 2020;10(26):15501–15513. doi:10.1039/D0RA00754D
  • Sonju JJ, Dahal A, Singh SS, et al. A pH-sensitive liposome formulation of a peptidomimetic-Dox conjugate for targeting HER2 + cancer. Int J Pharm. 2022;612:121364. doi:10.1016/j.ijpharm.2021.121364
  • Saadat M, Mostafaei F, Mahdinloo S, et al. Drug delivery of pH-Sensitive nanoparticles into the liver cancer cells. J Drug Delivery Sci Technol. 2021;63:102557. doi:10.1016/j.jddst.2021.102557
  • Ghosh R, Mondal S, Mukherjee D, et al. Oral drug delivery using a polymeric nanocarrier: chitosan nanoparticles in the delivery of rifampicin. Mater Adv. 2022;3(11):4622–4628. doi:10.1039/D2MA00295G
  • More KN, Mun S-K, Kang J, Kim -J-J, Yee S-T, Chang D-J. Molecular design of fluorescent pH sensors based on reduced rhodol by structure-pKa relationship for imaging of lysosome. Dyes Pigm. 2021;184:108785. doi:10.1016/j.dyepig.2020.108785
  • Wang Q, Zhou L, Qiu L, Lu D, Wu Y, Zhang X-B. An efficient ratiometric fluorescent probe for tracking dynamic changes in lysosomal pH. Analyst. 2015;140(16):5563–5569. doi:10.1039/C5AN00683J
  • Zheng Q, Cheng W, Zhang X, Shao R, Li Z. A pH-induced reversible assembly system with resveratrol-controllable loading and release for enhanced tumor-targeting chemotherapy. Nanoscale Res Lett. 2019;14(1):305. doi:10.1186/s11671-019-3139-z
  • Gaohua L, Miao X, Dou L. Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert Opin Drug Metab Toxicol. 2021;17(9):1103–1124. doi:10.1080/17425255.2021.1951223
  • Nasr M, Kira AY, Saber S, Essa EA, El-Gizawy SA. Telmisartan-Loaded lactosylated chitosan nanoparticles as a liver specific delivery system: synthesis, optimization and targeting efficiency. AAPS Pharm Sci Tech. 2023;24(6):144. doi:10.1208/s12249-023-02605-9
  • Li L, Zhang X, Pi C, et al. Review of Curcumin Physicochemical Targeting Delivery System. Int J Nanomed. 2020;15:9799–9821. doi:10.2147/IJN.S276201
  • Yang Y, Wang Z, Peng Y, Ding J, Zhou W. A Smart pH-sensitive delivery system for enhanced anticancer efficacy via paclitaxel endosomal escape. Front Pharmacol. 2019;10:10. doi:10.3389/fphar.2019.00010
  • Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon. 2022;8(1):e08674. doi:10.1016/j.heliyon.2021.e08674
  • Medina-Moreno A, El-Hammadi MM, Arias JL. pH-dependent, extended release and enhanced in vitro efficiency against colon cancer of Tegafur formulated using chitosan-coated poly(ε-caprolactone) nanoparticles. J Drug Delivery Sci Technol. 2023;86:104594. doi:10.1016/j.jddst.2023.104594
  • Tian X, Shi A, Yin H, et al. Nanomaterials respond to lysosomal function for tumor treatment. Cells. 2022;11(21):3348. doi:10.3390/cells11213348
  • Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD. Cellular uptake and retention of nanoparticles: insights on particle properties and interaction with cellular components. Mater Today Commun. 2020;25:101692.
  • Dharmayanti C, Gillam TA, Klingler-Hoffmann M, Albrecht H, Blencowe A. Strategies for the development of pH-responsive synthetic polypeptides and polymer-peptide hybrids: recent advancements. Polymers. 2021;13(4):624. doi:10.3390/polym13040624
  • Guo K, Liu Y, Ding M, Sun Q, Shubhra QTH. Enhanced drug release from a pH-responsive nanocarrier can augment colon cancer treatment by blocking PD-L1 checkpoint and consuming tumor glucose. Mater Des. 2022;219:110824. doi:10.1016/j.matdes.2022.110824
  • Chu S, Shi X, Tian Y, Gao F. pH-responsive polymer nanomaterials for tumor therapy. Front Oncol. 2022;12:855019. doi:10.3389/fonc.2022.855019
  • Nallamuthu I, Devi A, Khanum F. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci. 2015;10(3):203–211. doi:10.1016/j.ajps.2014.09.005
  • Shahid N, Erum A, Zaman M, et al. Synthesis and evaluation of chitosan based controlled release nanoparticles for the delivery of ticagrelor. Des. Monomers Polym. 2022;25(1):55–63. doi:10.1080/15685551.2022.2054117
  • Imtiyaz Z, He J, Leng Q, Agrawal AK, Mixson AJ. pH-sensitive targeting of tumors with chemotherapy-laden nanoparticles: progress and challenges. Pharmaceutics. 2022;14(11):2427. doi:10.3390/pharmaceutics14112427
  • Argitekin E, Ersoz-Gulseven E, Cakan-Akdogan G, Akdogan Y. Dopamine-conjugated bovine serum albumin nanoparticles containing pH-responsive catechol-V (III) coordination for in vitro and in vivo drug delivery. Biomacromolecules. 2023;24(8):3603–3618. doi:10.1021/acs.biomac.3c00363
  • Virmani T, Kumar G, Sharma A, et al. Amelioration of cancer employing chitosan, its derivatives, and chitosan-based nanoparticles: recent updates. Polymers. 2023;15(13):2928. doi:10.3390/polym15132928
  • Meng F, Cheng R, Deng C, Zhong Z. Intracellular drug release nanosystems. Mater Today. 2012;15(10):436–442. doi:10.1016/S1369-7021(12)70195-5
  • Niu N, Wang L. In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics. 2015;16(3):273–285. doi:10.2217/pgs.14.170
  • Pan E, Bogumil D, Cortessis V, Yu S, Nieva J. A systematic review of the efficacy of preclinical models of lung cancer drugs. Front Oncol. 2020;10:591. doi:10.3389/fonc.2020.00591
  • Kumar N, Afjei R, Massoud TF, Paulmurugan R. Comparison of cell-based assays to quantify treatment effects of anticancer drugs identifies a new application for Bodipy-L-cystine to measure apoptosis. Sci Rep. 2018;8(1):16363. doi:10.1038/s41598-018-34696-x
  • Wadhawan A, Singh J, Sharma H, et al. Anticancer biosurfactant-loaded PLA–PEG nanoparticles induce apoptosis in human MDA-MB-231 breast cancer cells. ACS omega. 2022;7(6):5231–5241. doi:10.1021/acsomega.1c06338
  • Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:193. doi:10.3389/fmolb.2020.00193
  • Gallego NE, Wray S, Preza E, Abramov AY. Higher mitochondrial membrane potential induces ROS production in the familiar form of frontotemporal dementia with MAPT mutations. Biophys. J. 2015;108(2):1.
  • Rovini A, Heslop K, Hunt EG, et al. Quantitative analysis of mitochondrial membrane potential heterogeneity in unsynchronized and synchronized cancer cells. FASEB J. 2021;35(1):e21148. doi:10.1096/fj.202001693R
  • Zorova LD, Popkov VA, Plotnikov EY, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50–59. doi:10.1016/j.ab.2017.07.009
  • Backes S, Herrmann JM. Protein translocation into the intermembrane space and matrix of mitochondria: mechanisms and driving forces. Front Mol Biosci. 2017;4:83. doi:10.3389/fmolb.2017.00083
  • Kalvelytė AV, Imbrasaitė A, Krestnikova N, Stulpinas A. Chapter Four - Adult Stem Cells and Anticancer Therapy. In: Fishbein JC, Heilman JM, editors. Advances in Molecular Toxicology. Vol. 11. Elsevier; 2017:123–202.
  • Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther. 2019;25(7):816–824. doi:10.1111/cns.13116
  • van der Stel W, Yang H, le Dévédec SE, van de Water B, Beltman JB, Danen EHJ. High-content high-throughput imaging reveals distinct connections between mitochondrial morphology and functionality for OXPHOS complex I, III, and V inhibitors. Cell Biol Toxicol. 2022;2022:1.
  • Norat P, Soldozy S, Sokolowski JD, et al. Mitochondrial dysfunction in neurological disorders: exploring mitochondrial transplantation. Npj Regenerat Med. 2020;5(1):22. doi:10.1038/s41536-020-00107-x
  • Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders — a step towards mitochondria based therapeutic strategies. Bioch et Bioph Acta. 2017;1863(5):1066–1077. doi:10.1016/j.bbadis.2016.11.010
  • Bagkos G, Koufopoulos K, Piperi C. A new model for mitochondrial membrane potential production and storage. Med Hypotheses. 2014;83(2):175–181. doi:10.1016/j.mehy.2014.05.001
  • Kim SY. Cancer energy metabolism: shutting power off cancer factory. Biomol Ther. 2018;26(1):39–44. doi:10.4062/biomolther.2017.184
  • Vultaggio-Poma V, Sarti AC, Di Virgilio F. Extracellular ATP: a Feasible Target for Cancer Therapy. Cells. 2020;9(11):2496. doi:10.3390/cells9112496
  • Yang Y, Bai J, Du W, Kong D. The mechanisms of action of mitochondrial targeting agents in cancer: inhibiting oxidative phosphorylation and inducing apoptosis. Front Pharmacol. 2023;14:1243613. doi:10.3389/fphar.2023.1243613
  • Lyamzaev KG, Tokarchuk AV, Panteleeva AA, Mulkidjanian AY, Skulachev VP, Chernyak BV. Induction of autophagy by depolarization of mitochondria. Autophagy. 2018;14(5):921–924. doi:10.1080/15548627.2018.1436937
  • Johnson TA, Jinnah H, Kamatani N. Shortage of cellular ATP as a cause of diseases and strategies to enhance ATP. Front Pharmacol. 2019;10:98. doi:10.3389/fphar.2019.00098
  • Mori K, Uchida T, Yoshie T, et al. A mitochondrial ROS pathway controls matrix metalloproteinase 9 levels and invasive properties in RAS‐activated cancer cells. FEBS J. 2019;286(3):459–478. doi:10.1111/febs.14671
  • Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8(21):2003–2014. doi:10.3969/j.issn.1673-5374.2013.21.009
  • Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:942916. doi:10.1155/2013/942916
  • Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of Food and Drug Analysis. 2014;22(1):64–75. doi:10.1016/j.jfda.2014.01.005
  • Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019;9(11):735. doi:10.3390/biom9110735
  • Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Bioch et Bioph Acta. 2016;1863(12):2977–2992. doi:10.1016/j.bbamcr.2016.09.012
  • Perillo B, Di Donato M, Pezone A, et al. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 2020;52(2):192–203. doi:10.1038/s12276-020-0384-2
  • Hasan A, Rizvi SF, Parveen S, Pathak N, Nazir A, Mir SS. Crosstalk between ROS and autophagy in tumorigenesis: understanding the multifaceted paradox. Front Oncol. 2022;2022:12.
  • Kma L, Baruah TJ. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Feb. 2022;69(1):248–264.
  • Hoy MA. Chapter 8 - DNA Amplification by the Polymerase Chain Reaction: molecular Biology Made Accessible. In: Hoy MA, editor. Insect Molecular Genetics. San Diego: Academic Press; 2013:307–372.
  • Lobert S, Hiser L, Correia JJ. Chapter 4 - Expression Profiling of Tubulin Isotypes and Microtubule-Interacting Proteins Using Real-Time Polymerase Chain Reaction. In: Wilson L, Correia JJ, editors. Methods in Cell Biology. Vol 95: Academic Press; 2010:47–58.
  • Ozturk M, Ozsoylemez OD, Dagistanli FK. The detection techniques for autophagy-associated cell death-related genes and proteins: gene expression assay and Immunohistochemistry. Meth Mol Bio. 2019;1854:119–130.
  • Jiang Z, Liu J, Chen B, et al. Cytotoxic effects of a sesquiterpene β-elemene on THP-1 leukemia cells is mediated via crosstalk between beclin-1 mediated autophagy and caspase-dependent apoptosis. Process Biochem. 2019;87:174–178. doi:10.1016/j.procbio.2019.09.006
  • Amatori S, Persico G, Fanelli M. Real-time quantitative PCR array to study drug-induced changes of gene expression in tumor cell lines. J Cancer Metastasis Treat. 2017;3(5):90–99. doi:10.20517/2394-4722.2017.22
  • Levine B, Kroemer G. SnapShot: macroautophagy. Cell. 2008;132(1):162.e161–162.e163. doi:10.1016/j.cell.2007.12.026
  • Dong L, He J, Luo L, Wang K. Targeting the interplay of autophagy and ros for cancer therapy: an updated overview on phytochemicals. Pharmaceuticals. 2023;16(1). doi:10.3390/ph16010092
  • Trelford CB, Di Guglielmo GM. Canonical and non-canonical TGFβ signaling activate autophagy in an ULK1-dependent manner. Front Cell Develop Biol. 2021;9:712124. doi:10.3389/fcell.2021.712124
  • Nam KH, Yi SA, Nam G, et al. Identification of a novel S6K1 inhibitor, rosmarinic acid methyl ester, for treating cisplatin-resistant cervical cancer. BMC Cancer. 2019;19(1):773. doi:10.1186/s12885-019-5997-2
  • Zhang L, Fu L, Zhang S, et al. Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo. Chem Sci. 2017;8(4):2687–2701. doi:10.1039/C6SC05368H
  • Li C, Xu H, Chen X, et al. Aqueous extract of clove inhibits tumor growth by inducing autophagy through AMPK/ULK pathway. Phytoth Res. 2019;33(7):1794–1804. doi:10.1002/ptr.6367
  • Ye X, Zhou XJ, Zhang H. Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Front Immunol. 2018;9:2334. doi:10.3389/fimmu.2018.02334
  • Kadowaki M, Karim MR. Cytosolic LC3 ratio as a quantitative index of macroautophagy. Methods Enzymol. 2009;452:199–213.
  • Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 2004;36(12):2503–2518. doi:10.1016/j.biocel.2004.05.009
  • Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19(21):5720–5728. doi:10.1093/emboj/19.21.5720
  • Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5-16L1. Molecular Cell. 2014;55(2):238–252. doi:10.1016/j.molcel.2014.05.021
  • Mackeh R, Perdiz D, Lorin S, Codogno P, Poüs C. Autophagy and microtubules–new story, old players. J Cell Sci. 2013;126(5):1071–1080. doi:10.1242/jcs.115626
  • Klionsky DJ, Eskelinen E-L, Deretic V. Autophagosomes, Phagosomes, Autolysosomes, Phagolysosomes, Autophagolysosomes… Wait, I’m Confused. Vol. 10. Taylor & Francis; 2014:549–551.
  • Kudriaeva AA, Sokolov AV, Belogurov AAJ. Stochastics of degradation: the autophagic-lysosomal system of the cell. Acta naturae. 2020;12(1):18–32. doi:10.32607/actanaturae.10936
  • Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunol Res. 2014;2(9):823–830. doi:10.1158/2326-6066.CIR-14-0112
  • Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12(1):86. doi:10.1186/1476-4598-12-86
  • Cartwright T, Perkins NDL, Wilson C. NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J. 2016;283(10):1812–1822. doi:10.1111/febs.13627
  • Concetti J, Wilson CL. NFKB1 and Cancer: friend or Foe? Cells. 2018;7(9):133. doi:10.3390/cells7090133
  • Zilfou JT, Lowe SW. Tumor suppressive functions of p53. Cold Spring Harbor Perspect. Biol. 2009;1(5):a001883–a001883. doi:10.1101/cshperspect.a001883
  • Jin S. Autophagy and tumor suppression. Autophagy. 2005;1(3):171–173. doi:10.4161/auto.1.3.2051
  • Lowe JM, Menendez D, Bushel PR, et al. p53 and NF-κB coregulate proinflammatory gene responses in human macrophages. Cancer Res. 2014;74(8):2182–2192. doi:10.1158/0008-5472.CAN-13-1070
  • Salminen A, Hyttinen JM, Kauppinen A, Kaarniranta K. Context-dependent regulation of autophagy by IKK-NF- κ B signaling: impact on the aging process. Int J Cell Biol. 2012;2012:1–15. doi:10.1155/2012/849541
  • Mi W, Wang C, Luo G, et al. Targeting ERK induced cell death and p53/ROS-dependent protective autophagy in colorectal cancer. Cell Death Discovery. 2021;7(1):375. doi:10.1038/s41420-021-00677-9
  • Zhao X, Jiang K, Liang B, Huang X. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Oncol Rep. 2016;35(2):669–675. doi:10.3892/or.2015.4455
  • White E. Autophagy and p53. Cold Spring Harb Perspect Med. 2016;6(4):a026120. doi:10.1101/cshperspect.a026120
  • Rahman MA, Park MN, Rahman M, et al. p53 modulation of autophagy signaling in cancer therapies: perspectives mechanism and therapeutic targets. Front Cell Develop Biol. 2022;10:761080. doi:10.3389/fcell.2022.761080
  • Gugnoni M, Sancisi V, Manzotti G, Gandolfi G, Ciarrocchi A. Autophagy and epithelial–mesenchymal transition: an intricate interplay in cancer. Cell Death Dis. 2016;7(12):e2520–e2520. doi:10.1038/cddis.2016.415
  • Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol. 2020;13(6):100773. doi:10.1016/j.tranon.2020.100773
  • Lu W, Kang Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev. Cell. 2019;49(3):361–374. doi:10.1016/j.devcel.2019.04.010
  • Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, Dworecka-Kaszak B, Ngosa Toka F, Jurka P. Role of cadherins in cancer-a review. Int J Mol Sci. 2020;21(20):7624. doi:10.3390/ijms21207624
  • Gottardi CJ, Wong E, Gumbiner BM. E-cadherin suppresses cellular transformation by inhibiting β-catenin signaling in an adhesion-independent manner. J Cell Biol. 2001;153(5):1049–1060. doi:10.1083/jcb.153.5.1049
  • T-Y N, Schecterson L, Mendonsa AM, Gumbiner BM. The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci. 2020;117(11):5931–5937. doi:10.1073/pnas.1918167117
  • Wang Y, Shi J, Chai K, Ying X, Zhou BP. The role of snail in EMT and tumorigenesis. Curr Cancer Drug Targets. 2013;13(9):963–972. doi:10.2174/15680096113136660102
  • Usman S, Waseem NH, Nguyen TKN, Mohsin S. Vimentin is at the heart of epithelial mesenchymal transition (EMT) Mediated metastasis. Cancers. 2021;13(19):4985. doi:10.3390/cancers13194985
  • Jonckheere S, Adams J, De Groote D, Campbell K, Berx G, Goossens S. Epithelial-mesenchymal transition (EMT) as a therapeutic target. Cells Tissues Organs. 2022;211(2):157–182. doi:10.1159/000512218
  • Hui San S, Ching Ngai S. E-cadherin re-expression: its potential in combating TRAIL resistance and reversing epithelial-to-mesenchymal transition. Gene. 2024;909:148293. doi:10.1016/j.gene.2024.148293
  • Takeda T, Tsubaki M, Matsuda T, et al. EGFR inhibition reverses epithelial‑mesenchymal transition, and decreases tamoxifen resistance via Snail and Twist downregulation in breast cancer cells. Oncol Rep. 2022;47(6):1–13. doi:10.3892/or.2022.8320
  • Mazumdar S, Chitkara D, Mittal A. Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers. Acta Pharmaceutica Sinica B. 2021;11(4):903–924. doi:10.1016/j.apsb.2021.02.019
  • Qiu C, Xia F, Zhang J, et al. Advanced strategies for overcoming endosomal/lysosomal barrier in nanodrug delivery. Research. 2023;6:0148. doi:10.34133/research.0148
  • Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics. 2021;13(10):1686. doi:10.3390/pharmaceutics13101686
  • Rathore B, Sunwoo K, Jangili P, et al. Nanomaterial designing strategies related to cell lysosome and their biomedical applications: a review. Biomaterials. 2019;211:25–47. doi:10.1016/j.biomaterials.2019.05.002
  • Yang JM, Wu LJ, Lin MT, et al. Construction and evaluation of chitosan-based nanoparticles for oral administration of exenatide in type 2 diabetic rats. Polymers. 2022;14(11). doi:10.3390/polym14112181
  • Jin H, Pi J, Yang F, et al. Folate-chitosan nanoparticles loaded with ursolic acid confer anti-breast cancer activities in vitro and in vivo. Sci Rep. 2016;6(1):30782. doi:10.1038/srep30782
  • Campoccia D, Ravaioli S, Santi S, et al. Exploring the anticancer effects of standardized extracts of poplar-type propolis: in vitro cytotoxicity toward cancer and normal cell lines. Biomed. Pharmacother. 2021;141:111895. doi:10.1016/j.biopha.2021.111895
  • Hadjzadeh M-A-R, Ghanbari H, Keshavarzi Z, Tavakol-Afshari J. The effects of aqueous extract of Alpinia galangal on gastric cancer cells (AGS) and L929 cells in vitro. Iran J Cancer Prev. 2014;7(3):142–146.
  • Chang M-C, J-Y W, Liao H-F, Chen Y-J, Kuo C-D. Comparative assessment of therapeutic safety of norcantharidin, N-farnesyloxy-norcantharimide, and N-farnesyl-norcantharimide against Jurkat T cells relative to human normal lymphoblast: a quantitative pilot study. Medicine. 2016;95(31):e4467–e4467. doi:10.1097/MD.0000000000004467
  • Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett. 2021;16(1):173. doi:10.1186/s11671-021-03628-6
  • Nalezinková M. In vitro hemocompatibility testing of medical devices. Thromb Res. 2020;195:146–150. doi:10.1016/j.thromres.2020.07.027
  • Weber M, Steinle H, Golombek S, et al. Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Front Bioeng Biotechnol. 2018;6:99. doi:10.3389/fbioe.2018.00099
  • Kuchinka J, Willems C, Telyshev DV. Control of blood coagulation by hemocompatible material surfaces-a review. Bioengineering. 2021;8(12). doi:10.3390/bioengineering8120215
  • Li X, Wang L, Fan Y, Feng Q, Cui F-Z. Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater. 2012;2012:6–6.
  • Malehmir S, Esmaili MA, Mahabady MK, et al. A review: hemocompatibility of magnetic nanoparticles and their regenerative medicine, cancer therapy, drug delivery, and bioimaging applications. Front Chem. 2023;11:1249134. doi:10.3389/fchem.2023.1249134