150
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Controlled siRNA Release of Nanopolyplex for Effective Targeted Anticancer Therapy in Animal Model

, , , , , , , ORCID Icon & show all
Pages 1145-1161 | Received 08 Oct 2023, Accepted 16 Jan 2024, Published online: 06 Feb 2024

References

  • Kim HJ, Kim A, Miyata K, et al. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev. 2016;104:61–77.
  • Chalbatani GM, Dana H, Gharagouzloo E, et al. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomed. 2019;14:3111–3128. doi:10.2147/IJN.S200253
  • Abosalha AK, Boyajian J, Ahmad W, et al. Clinical pharmacology of siRNA therapeutics: current status and future prospects. Expert Rev Clin Phar. 2022;15(11):1327–1341. doi:10.1080/17512433.2022.2136166
  • Mehanna MM, Abla KK. siRNA nanohybrid systems: false hope or feasible answer in cancer management. Ther Deliv. 2022;13(2):109–133. doi:10.4155/tde-2021-0068
  • Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23(5):265–280. doi:10.1038/s41576-021-00439-4
  • Saw PE, Song EW. siRNA therapeutics: a clinical reality. Sci China Life Sci. 2020;63(4):485–500. doi:10.1007/s11427-018-9438-y
  • Kurakula H, Vaishnavi S, Sharif MY, et al. Emergence of small interfering RNA-based gene drugs for various diseases. ACS Omega. 2023;8(23):20234–20250. doi:10.1021/acsomega.3c01703
  • Liu S, Sun XY, Lu H, et al. Fullerene-based nanocomplex assists pulmonary delivery of siRNA for treating metastatic lung cancer. Nano Today. 2023;50:101878. doi:10.1016/j.nantod.2023.101878
  • Tarab-Ravski D, Hazan-Halevy I, Goldsmith M, et al. Delivery of therapeutic RNA to the bone marrow in multiple myeloma using CD38-targeted lipid nanoparticles. Adv Sci. 2023;10(21):e2301377. doi:10.1002/advs.202301377
  • Zhang QF, Kuang GZ, Li WZ, et al. Stimuli-responsive gene delivery nanocarriers for cancer therapy. Nano-Micro Lett. 2023;15(1):44.
  • Wang ZX, Zhang XL, Han MS, et al. An ultra pH-responsive peptide nanocarrier for cancer gene therapy. J Mater Chem B. 2023;11(37):8974–8984. doi:10.1039/D3TB01311A
  • Ye SY, Feng YL, Zhang YQ, et al. Furin enzyme-responsive siRNA delivery system for efficient anti-hypoxia-assisted cancer photodynamic therapy. CCS Chem. 2023:1–12. doi:10.31635/ccschem.023.202302777
  • Ye YH, Zhang LL, Dai YH, et al. PSMA-targeting reduction-cleavable hyperbranched polyamide-amine gene delivery system to treat the bone metastases of prostate cancer. Int J Nanomed. 2020;15:7173–7184. doi:10.2147/IJN.S268398
  • Yang YX, Ning HJ, Xia TP, et al. Electrostatic attractive self-delivery of siRNA and light-induced self-escape for synergistic gene therapy. Adv Mater. 2023;35(30):e2301409. doi:10.1002/adma.202301409
  • Mo YL, Cheng HYM, D’Elia A, et al. Light-activated siRNA endosomal release (LASER) by porphyrin lipid nanoparticles. ACS Nano. 2023;17(5):4688–4703.
  • Lin XY, Wu M, Li M, et al. Photo-responsive hollow silica nanoparticles for light-triggered genetic and photodynamic synergistic therapy. Acta Biomater. 2018;76:178–192. doi:10.1016/j.actbio.2018.07.007
  • Wang JX, He XY, Shen S, et al. ROS-sensitive cross-linked polyethylenimine for red-light-activated siRNA therapy. ACS Appl Mater Inter. 2019;11(2):1855–1863. doi:10.1021/acsami.8b18697
  • Foster AA, Greco CT, Green MD, et al. Light-mediated activation of siRNA release in diblock copolymer assemblies for controlled gene silencing. Adv Healthc Mater. 2015;4(5):760–770. doi:10.1002/adhm.201400671
  • Deng SH, Wang SY, Xiao ZC, et al. Unprotonatable and ROS-sensitive nanocarrier for NIR spatially activated siRNA therapy with synergistic drug effect. Small. 2022;18(41):e2203823.
  • Zhang MJ, Weng YH, Cao ZY, et al. ROS-activatable siRNA-engineered polyplex for NIR-triggered synergistic cancer treatment. ACS Appl Mater Inter. 2020;12(29):32289–32300. doi:10.1021/acsami.0c06614
  • Li W, Wang JS, Ren JS, et al. Near-infrared upconversion controls photocaged cell adhesion. J Am Chem Soc. 2014;136(6):2248–2251. doi:10.1021/ja412364m
  • Liang HX, Li ZH, Ren ZG, et al. Light-triggered NO-releasing nanoparticles for treating mice with liver fibrosis. Nano Res. 2020;13(8):2197–2202. doi:10.1007/s12274-020-2833-6
  • Yan ZQ, Qin HS, Ren JS, et al. Photocontrolled multidirectional differentiation of mesenchymal stem cells on an upconversion substrate. Angew Chem Int Edit. 2018;57(35):11182–11187.
  • Idris NM, Gnanasammandhan MK, Zhang J, et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med. 2012;18(10):1580–1585. doi:10.1038/nm.2933
  • Jayakumar MKG, Idris NM, Zhang Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci USA. 2012;109(22):8483–8488. doi:10.1073/pnas.1114551109
  • Deng SH, Li XX, Liu S, et al. Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects. Sci Adv. 2020;6(29):eabb4005. doi:10.1126/sciadv.abb4005
  • Yu ZL, Deng P, Chen YF, et al. Inhibition of the PLK1-coupled cell cycle machinery overcomes resistance to oxaliplatin in colorectal cancer. Adv Sci. 2021;8(23):e2100759.
  • Liu ZX, Sun QR, Wang XS. PLK1, a potential target for cancer therapy. Transl Oncol. 2017;10(1):22–32. doi:10.1016/j.tranon.2016.10.003
  • Liang S, Yang XZ, Du XJ, et al. Optimizing the size of micellar nanoparticles for efficient siRNA delivery. Adv Funct Mater. 2015;25(30):4778–4787. doi:10.1002/adfm.201501548
  • Huang XH, Li JW, Li GY, et al. Cation-free siRNA-cored nanocapsules for tumor-targeted RNAi therapy. Acta Biomater. 2023;161:226–237. doi:10.1016/j.actbio.2023.03.001
  • Degenhardt Y, Lampkin T. Targeting polo-like kinase in cancer therapy. Clin Cancer Res. 2010;16(2):384–389. doi:10.1158/1078-0432.CCR-09-1380