533
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Nano-Drug Delivery Systems Based on Natural Products

ORCID Icon, , , , , , & show all
Pages 541-569 | Received 08 Oct 2023, Accepted 09 Jan 2024, Published online: 17 Jan 2024

References

  • Khan IA, Smillie T. Implementing a “Quality by Design” Approach to Assure the Safety and Integrity of Botanical Dietary Supplements. J Nat Prod. 2012;75(9):1665–1673. doi:10.1021/np300434j
  • Mehta P, Shah R, Lohidasan S, Mahadik KR. Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants-A comprehensive review. J Tradit Complement Med. 2015;5(4):207–227. doi:10.1016/j.jtcme.2014.11.041
  • Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016;8(6):531–541. doi:10.1038/nchem.2479
  • Vanti G. Recent strategies in nanodelivery systems for natural products: a review. Environ Chem Lett. 2021;19(6):4311–4326. doi:10.1007/s10311-021-01276-x
  • Beutler JA. Natural Products as a Foundation for Drug Discovery. Curr Protoc Pharmacol. 2009;46:9.11.1–9.11.21. doi:10.1002/0471141755.ph0911s46
  • Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomed. 2015;10:6055–6074. doi:10.2147/IJN.S92162
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71. doi:10.1186/s12951-018-0392-8
  • Martinho N, Damgé C, Reis CP. Recent Advances in Drug Delivery Systems. J Biomater Nanobiotechnol. 2011;02(05):510–526. doi:10.4236/jbnb.2011.225062
  • Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed. 2017;12:2957–2978. doi:10.2147/IJN.S127683
  • Bonifácio BV, Silva PB, Ramos MADS, Negri KMS, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomed. 2014;9:1–15. doi:10.2147/IJN.S52634
  • Liu Z, Tabakman S, Welsher K, Dai H. Carbon Nanotubes in Biology and Medicine: in vitro and in vivo Detection, Imaging and Drug Delivery. Nano Res. 2009;2(2):85–120. doi:10.1007/s12274-009-9009-8
  • Razzacki SZ, Thwar PK, Yang M, Ugaz VM, Burns MA. Integrated microsystems for controlled drug delivery. Adv Drug Deliv Rev. 2004;56(2):185–198. doi:10.1016/j.addr.2003.08.012
  • Lam PL, Wong WY, Bian Z, Chui CH, Gambari R. Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomed. 2017;12(4):357–385. doi:10.2217/nnm-2016-0305
  • Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: alternatives Against Drug-Resistant Pathogenic Microbes. Mol. 2016;21(7):836.
  • Saka R, Chella N. Nanotechnology for delivery of natural therapeutic substances: a review. Environ Chem Lett. 2021;19(2):1097–1106. doi:10.1007/s10311-020-01103-9
  • Jain H, Chella N. Methods to improve the solubility of therapeutical natural products: a review. Environ Chem Lett. 2021;19(1):111–121. doi:10.1007/s10311-020-01082-x
  • Paroha S, Dewangan RP, Dubey RD, Sahoo PK. Conventional and nanomaterial-based techniques to increase the bioavailability of therapeutic natural products: a review. Environ Chem Lett. 2020;18(6):1767–1778. doi:10.1007/s10311-020-01038-1
  • Ita KB. Prodrugs for transdermal drug delivery – trends and challenges. J Drug Target. 2016;24(8):671–678. doi:10.3109/1061186X.2016.1154562
  • Fang JY, Leu YL. Prodrug strategy for enhancing drug delivery via skin. Curr Drug Discov Technol. 2006;3(3):211–224. doi:10.2174/157016306780136772
  • Shi X, Sun K, Baker JR. Spontaneous Formation of Functionalized Dendrimer-Stabilized Gold Nanoparticles. J Phys Chem C Nanomater Interfaces. 2009;112(22):8251–8258. doi:10.1021/jp801293a
  • Park SH, Oh SG, Mun JY, Han SS. Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf B Biointerfaces. 2006;48(2):112–118. doi:10.1016/j.colsurfb.2006.01.006
  • Qiao L, Han M, Gao S, et al. Research progress on nanotechnology for delivery of active ingredients from traditional Chinese medicines. J Mater Chem B. 2020;8(30):6333–6351. doi:10.1039/D0TB01260B
  • Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17(9):507–522. doi:10.1038/nrg.2016.86
  • Muro S. Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release off J Control Release Soc. 2012;164(2):125–137. doi:10.1016/j.jconrel.2012.05.052
  • Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov. 2015;14(3):203–219. doi:10.1038/nrd4519
  • Péczka N, Orgován Z, Ábrányi-Balogh P, Keserű GM. Electrophilic warheads in covalent drug discovery: an overview. Expert Opin Drug Discov. 2022;17(4):413–422. doi:10.1080/17460441.2022.2034783
  • Srinivasarao M, Low PS. Ligand-Targeted Drug Delivery. Chem Rev. 2017;117(19):12133–12164. doi:10.1021/acs.chemrev.7b00013
  • Li Y, Chen M, Yao B, et al. Transferrin receptor-targeted redox/pH-sensitive podophyllotoxin prodrug micelles for multidrug-resistant breast cancer therapy. J Mater Chem B. 2019;7(38):5814–5824. doi:10.1039/C9TB00651F
  • Van Heertum RL, Scarimbolo R, Ford R, Berdougo E, O’Neal M. Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials. Drug Des Devel Ther. 2015;9:5215–5223. doi:10.2147/DDDT.S87561
  • Maurer AH, Elsinga P, Fanti S, Nguyen B, Oyen WJG, Weber WA. Imaging the folate receptor on cancer cells with 99mTc-etarfolatide: properties, clinical use, and future potential of folate receptor imaging. J Nucl Med off Publ Soc Nucl Med. 2014;55(5):701–704.
  • Farkas R, Siwowska K, Ametamey SM, Schibli R, van der Meulen NP, Müller C. 64Cu- and 68Ga-Based PET Imaging of Folate Receptor-Positive Tumors: development and Evaluation of an Albumin-Binding NODAGA−Folate. Mol Pharm. 2016;13(6):1979–1987. doi:10.1021/acs.molpharmaceut.6b00143
  • Fani M, Tamma ML, Nicolas GP, et al. In Vivo Imaging of Folate Receptor Positive Tumor Xenografts Using Novel 68Ga-NODAGA-Folate Conjugates. Mol Pharm. 2012;9(5):1136–1145. doi:10.1021/mp200418f
  • Müller C, Schibli R. Folic Acid Conjugates for Nuclear Imaging of Folate Receptor–Positive Cancer. J Nucl Med off Publ Soc Nucl Med. 2011;52(1):1–4.
  • Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. BioMed Res Int. 2014;2014:814208. doi:10.1155/2014/814208
  • Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol. 2020;17(6):349–359. doi:10.1038/s41571-020-0339-5
  • Li-chao SUN, Shu-ying LI, Feng-zhong W, Feng-jiao XIN. Research Progresses in the Synthetic Biology of Terpenoids. Biotechnol Bull. 2017;33(1):64.
  • Lage H, Duarte N, Coburger C, Hilgeroth A, Ferreira MJU. Antitumor activity of terpenoids against classical and atypical multidrug resistant cancer cells. Phytomedicine. 2010;17(6):441–448. doi:10.1016/j.phymed.2009.07.009
  • Ge J, Liu Z, Zhong Z, et al. Natural terpenoids with anti-inflammatory activities: potential leads for anti-inflammatory drug discovery. Bioorg Chem. 2022;124:105817. doi:10.1016/j.bioorg.2022.105817
  • Yamaguchi T. Antibacterial effect of the combination of terpenoids. Arch Microbiol. 2022;204(8):520. doi:10.1007/s00203-022-03142-y
  • Lin LT, Chung CY, Hsu WC, et al. Saikosaponin b2 is a Naturally Occurring Terpenoid That Efficiently Inhibits Hepatitis C Virus Entry. J Hepatol. 2015;62(3):541–548. doi:10.1016/j.jhep.2014.10.040
  • Abdul Ghani MA, Ugusman A, Latip J, Zainalabidin S. Role of Terpenophenolics in Modulating Inflammation and Apoptosis in Cardiovascular Diseases: a Review. Int J Mol Sci. 2023;24(6):5339. doi:10.3390/ijms24065339
  • Gao J, Zhang Y, Liu X, Wu X, Huang L, Gao W. Triptolide: pharmacological spectrum, biosynthesis, chemical synthesis and derivatives. Theranostics. 2021;11(15):7199–7221. doi:10.7150/thno.57745
  • Xu H, Liu B. Triptolide-targeted delivery methods. Eur J Med Chem. 2019;164:342–351. doi:10.1016/j.ejmech.2018.12.058
  • Zhang YQ, Shen Y, Liao MM, et al. Galactosylated chitosan triptolide nanoparticles for overcoming hepatocellular carcinoma: enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms. Nanomedicine. 2019;15(1):86–97. doi:10.1016/j.nano.2018.09.002
  • Huang C, Zeng T, Li J, et al. Folate Receptor-Mediated Renal-Targeting Nanoplatform for the Specific Delivery of Triptolide to Treat Renal Ischemia/Reperfusion Injury. ACS Biomater Sci Eng. 2019;5(6):2877–2886. doi:10.1021/acsbiomaterials.9b00119
  • Qian T, Cai Z, Wong RNS, Mak NK, Jiang ZH. In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3. J Chromatogr B. 2005;816(1):223–232. doi:10.1016/j.jchromb.2004.11.036
  • Xu QF, Fang XL, Chen DF. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J Ethnopharmacol. 2003;84(2):187–192. doi:10.1016/S0378-8741(02)00317-3
  • Kim H, Lee JH, Kim JE, et al. Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability. J Ginseng Res. 2018;42(3):361–369. doi:10.1016/j.jgr.2017.12.003
  • Zhang J, Jiang Y, Li Y, et al. Micelles modified with a chitosan-derived homing peptide for targeted intracellular delivery of ginsenoside compound K to liver cancer cells. Carbohydr Polym. 2020;230:115576. doi:10.1016/j.carbpol.2019.115576
  • Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126(2):485–493. doi:10.1104/pp.126.2.485
  • Selvakumar P, Badgeley A, Murphy P, et al. Flavonoids and Other Polyphenols Act as Epigenetic Modifiers in Breast Cancer. Nutrients. 2020;12(3):761. doi:10.3390/nu12030761
  • Fernandes I, Pérez-Gregorio R, Soares S, Mateus N, De Freitas V. Wine Flavonoids in Health and Disease Prevention. Mol. 2017;22(2):292.
  • Amawi H, Ashby CR, Tiwari AK. Cancer chemoprevention through dietary flavonoids: what’s limiting? Chin J Cancer. 2017;36(1):50. doi:10.1186/s40880-017-0217-4
  • Gao S, Hu M. Bioavailability challenges associated with development of anti-cancer phenolics. Mini Rev Med Chem. 2010;10(6):550–567. doi:10.2174/138955710791384081
  • Khan H, Ullah H, Martorell M, et al. Flavonoids nanoparticles in cancer: treatment, prevention and clinical prospects. Semin Cancer Biol. 2021;69:200–211. doi:10.1016/j.semcancer.2019.07.023
  • Aiello P, Consalvi S, Poce G, et al. Dietary flavonoids: nano delivery and nanoparticles for cancer therapy. Semin Cancer Biol. 2021;69:150–165. doi:10.1016/j.semcancer.2019.08.029
  • Zhou Z, Ma J. Gambogic acid suppresses colon cancer cell activity in vitro. Exp Ther Med. 2019;18(4):2917–2923. doi:10.3892/etm.2019.7912
  • Lin D, Lin X, He T, Xie G. Gambogic Acid Inhibits the Progression of Gastric Cancer via circRNA_ASAP2/miR-33a-5p/CDK7 Axis. Cancer Manag Res. 2020;12:9221–9233. doi:10.2147/CMAR.S269768
  • Wang H, Zhao Z, Lei S, et al. Gambogic acid induces autophagy and combines synergistically with chloroquine to suppress pancreatic cancer by increasing the accumulation of reactive oxygen species. Cancer Cell Int. 2019;19:7. doi:10.1186/s12935-018-0705-x
  • Wang Y, Liang X, Tong R, et al. Gambogic Acid-Loaded Polymeric Micelles for Improved Therapeutic Effect in Breast Cancer. J Biomed Nanotechnol. 2018;14(10):1695–1704. doi:10.1166/jbn.2018.2626
  • Li M, Su F, Zhu M, et al. Research Progress in the Field of Gambogic Acid and Its Derivatives as Antineoplastic Drugs. Mol. 2022;27(9):2937.
  • Wang X, Chen W. Gambogic acid is a novel anti-cancer agent that inhibits cell proliferation, angiogenesis and metastasis. Anticancer Agents Med Chem. 2012;12(8):994–1000. doi:10.2174/187152012802650066
  • Xu W, Wang H, Dong L, et al. Hyaluronic acid-decorated redox-sensitive chitosan micelles for tumor-specific intracellular delivery of gambogic acid. Int J Nanomed. 2019;14:4649–4666. doi:10.2147/IJN.S201110
  • Peng Y, Zhao FZ, Guo CS, et al. Effects and Mechanism of Baicalin on Apoptosis of Cervical Cancer HeLa Cells In-vitro. Iran J Pharm Res IJPR. 2015;14(1):251–261.
  • Mei ZQ, Wang S, Zhang H, et al. The combination of baicalin and baicalein enhances apoptosis via the ERK/p38 MAPK pathway in human breast cancer cells. Acta Pharmacol Sin. 2009;30(12):1648–1658. doi:10.1038/aps.2009.166
  • Gao C, Zhou Y, Li H, et al. Antitumor effects of baicalin on ovarian cancer cells through induction of cell apoptosis and inhibition of cell migration in vitro. Mol Med Rep. 2017;16(6):8729–8734. doi:10.3892/mmr.2017.7757
  • Meng F, Liu F, Lan M, et al. Preparation and evaluation of folate-modified albumin baicalin-loaded nanoparticles for the targeted treatment of breast cancer. J Drug Deliv Sci Technol. 2021;65:102603. doi:10.1016/j.jddst.2021.102603
  • Li X, Li S, Ma C, Li T, Yang L. Preparation of baicalin-loaded ligand-modified nanoparticles for nose-to-brain delivery for neuroprotection in cerebral ischemia. Drug Deliv. 2022;29(1):1282–1298. doi:10.1080/10717544.2022.2064564
  • Zhang Z, Qiu C, Li X, et al. Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends Food Sci Technol. 2021;116:492–500. doi:10.1016/j.tifs.2021.08.009
  • Kostić AŽ, Milinčić DD, Gašić UM, et al. Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. LWT. 2019;112:108244. doi:10.1016/j.lwt.2019.06.011
  • Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr. 2005;81(1):215S–217S. doi:10.1093/ajcn/81.1.215S
  • Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, et al. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int J Nanomed. 2017;12:2689–2702. doi:10.2147/IJN.S131973
  • Ignat I, Radu DG, Volf I, Pag AI, Popa VI. Antioxidant and antibacterial activities of some natural polyphenol. Cellulose Chem Technol. 2013;47(5–6):387–399.
  • Yahfoufi N, Alsadi N, Jambi M, Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients. 2018;10(11):1618. doi:10.3390/nu10111618
  • Zhao C, Wan X, Zhou S, Cao H. Natural Polyphenols: a Potential Therapeutic Approach to Hypoglycemia. eFood. 2020;1(2):107–118. doi:10.2991/efood.k.200302.001
  • Kumar Vivekanandhan D, Ranjan Prasad Verma P, Kumar Singh S. Emerging Technologies for Improving Bioavailability of Polyphenols. Curr Nutr Food Sci. 2016;12(1):12–22. doi:10.2174/1573401311666151015213704
  • Han Y, Zhou J, Hu Y, et al. Polyphenol-Based Nanoparticles for Intracellular Protein Delivery via Competing Supramolecular Interactions. ACS Nano. 2020;14(10):12972–12981. doi:10.1021/acsnano.0c04197
  • Neethirajan S, Jayas DS. Nanotechnology for the Food and Bioprocessing Industries. Food Bioprocess Technol. 2011;4(1):39–47. doi:10.1007/s11947-010-0328-2
  • Gowd V, Kanika JC, et al. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J Nutr Biochem. 2022;109:109101. doi:10.1016/j.jnutbio.2022.109101
  • Liang M, Guo M, Saw PE, Yao Y. Fully Natural Lecithin Encapsulated Nano-Resveratrol for Anti-Cancer Therapy. Int J Nanomed. 2022;17:2069–2078. doi:10.2147/IJN.S362418
  • Jhaveri A, Deshpande P, Pattni B, Torchilin V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J Control Release. 2018;277:89–101. doi:10.1016/j.jconrel.2018.03.006
  • Naksuriya O, Okonogi S. Comparison and combination effects on antioxidant power of curcumin with gallic acid, ascorbic acid, and xanthone. Drug Discov Ther. 2015;9(2):136–141. doi:10.5582/ddt.2015.01013
  • Vallianou NG, Evangelopoulos A, Schizas N, Kazazis C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res. 2015;35(2):645–651.
  • Zhang Y, Xia Q, Li Y, et al. CD44 Assists the Topical Anti-Psoriatic Efficacy of Curcumin-Loaded Hyaluronan-Modified Ethosomes: a New Strategy for Clustering Drug in Inflammatory Skin. Theranostics. 2019;9(1):48. doi:10.7150/thno.29715
  • Yan Y, Li X, Zhang C, Lv L, Gao B, Li M. Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: a Review. Antibiot Basel Switz. 2021;10(3):318.
  • Qing ZX, Huang JL, Yang XY, et al. Anticancer and Reversing Multidrug Resistance Activities of Natural Isoquinoline Alkaloids and their Structure-activity Relationship. Curr Med Chem. 2018;25(38):5088–5114. doi:10.2174/0929867324666170920125135
  • Gorpenchenko TY, Grigorchuk VP, Bulgakov DV, Tchernoded GK, Bulgakov VP. Tempo-Spatial Pattern of Stepharine Accumulation in Stephania Glabra Morphogenic Tissues. Int J Mol Sci. 2019;20(4):808. doi:10.3390/ijms20040808
  • Souza CRM, Bezerra WP, Souto JT. Marine Alkaloids with Anti-Inflammatory Activity: current Knowledge and Future Perspectives. Mar Drugs. 2020;18(3):147. doi:10.3390/md18030147
  • Ma X, Zhou J, Zhang CX, et al. Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting berberine liposomes. Biomaterials. 2013;34(18):4452–4465. doi:10.1016/j.biomaterials.2013.02.066
  • Majidzadeh H, Araj-Khodaei M, Ghaffari M, Torbati M, Ezzati Nazhad Dolatabadi J, Hamblin MR. Nano-based delivery systems for berberine: a modern anti-cancer herbal medicine. Colloids Surf B Biointerfaces. 2020;194:111188. doi:10.1016/j.colsurfb.2020.111188
  • Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A. Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomedicine. 2016;12(1):81–103. doi:10.1016/j.nano.2015.08.006
  • Jacob J, Haponiuk JT, Thomas S, Gopi S. Biopolymer based nanomaterials in drug delivery systems: a review. Mater Today Chem. 2018;9:43–55. doi:10.1016/j.mtchem.2018.05.002
  • Ingle SG, Pai RV, Monpara JD, Vavia PR. Liposils: an effective strategy for stabilizing Paclitaxel loaded liposomes by surface coating with silica. Eur J Pharm Sci off J Eur Fed Pharm Sci. 2018;122:51–63.
  • Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release off J Control Release Soc. 2017;267:100–118. doi:10.1016/j.jconrel.2017.09.026
  • Geisler JP, Linnemeier GC, Thomas AJ, Manahan KJ. Extreme drug resistance is common after prior exposure to paclitaxel. Gynecol Oncol. 2007;106(3):538–540. doi:10.1016/j.ygyno.2007.05.002
  • Ganta S, Amiji M. Coadministration of Paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm. 2009;6(3):928–939. doi:10.1021/mp800240j
  • Li T, Yu P, Chen Y, et al. N-acetylgalactosamine-decorated nanoliposomes for targeted delivery of paclitaxel to hepatocellular carcinoma. Eur J Med Chem. 2021;222:113605. doi:10.1016/j.ejmech.2021.113605
  • Khoshnejad M, Parhiz H, Shuvaev VV, Dmochowski IJ, Muzykantov VR. Ferritin-based drug delivery systems: hybrid nanocarriers for vascular immunotargeting. J Control Release off J Control Release Soc. 2018;282:13–24. doi:10.1016/j.jconrel.2018.02.042
  • Liang M, Fan K, Zhou M, et al. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci U S A. 2014;111(41):14900–14905. doi:10.1073/pnas.1407808111
  • Fan K, Jia X, Zhou M, et al. Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma. ACS Nano. 2018;12(5):4105–4115. doi:10.1021/acsnano.7b06969
  • Pandolfi L, Bellini M, Vanna R, et al. H-Ferritin Enriches the Curcumin Uptake and Improves the Therapeutic Efficacy in Triple Negative Breast Cancer Cells. Biomacromolecules. 2017;18(10):3318–3330. doi:10.1021/acs.biomac.7b00974
  • Ma Y, Li R, Dong Y, et al. tLyP-1 Peptide Functionalized Human H Chain Ferritin for Targeted Delivery of Paclitaxel. Int J Nanomed. 2021;16:789. doi:10.2147/IJN.S289005
  • Yadav S, Sharma AK, Kumar P. Nanoscale Self-Assembly for Therapeutic Delivery. Front Bioeng Biotechnol. 2020;8:127. doi:10.3389/fbioe.2020.00127
  • Mendes AC, Baran ET, Reis RL, Azevedo HS. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(6):582–612. doi:10.1002/wnan.1238
  • Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature. 1993;366(6453):324–327. doi:10.1038/366324a0
  • Zhang S, Holmes T, Lockshin C, Rich A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A. 1993;90(8):3334–3338. doi:10.1073/pnas.90.8.3334
  • Das RP, Singh BG, Kunwar A. Preparation of a size selective nanocomposite through temperature assisted co-assembly of gelatin and pluronic F127 for passive targeting of doxorubicin. Biomater Sci. 2020;8(15):4251–4265. doi:10.1039/D0BM00725K
  • Qiao L, Yang H, Gao S, Li L, Fu X, Wei Q. Research progress on self-assembled nanodrug delivery systems. J Mater Chem B. 2022;10(12):1908–1922. doi:10.1039/D1TB02470A
  • Jiang Y, Wang X, Liu X, et al. Enhanced Antiglioma Efficacy of Ultrahigh Loading Capacity Paclitaxel Prodrug Conjugate Self-Assembled Targeted Nanoparticles. ACS Appl Mater Interfaces. 2017;9(1):211–217. doi:10.1021/acsami.6b13805
  • Karaosmanoglu S, Zhou M, Shi B, Zhang X, Williams GR, Chen X. Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release off J Control Release Soc. 2021;329:805–832. doi:10.1016/j.jconrel.2020.10.014
  • Nguyen HN, Ullevig SL, Short JD, Wang L, Ahn YJ, Asmis R. Ursolic Acid and Related Analogues: triterpenoids with Broad Health Benefits. Antioxid Basel Switz. 2021;10(8):1161. doi:10.3390/antiox10081161
  • Khwaza V, Oyedeji OO, Aderibigbe BA. Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: an Update. Int J Mol Sci. 2020;21(16):5920. doi:10.3390/ijms21165920
  • Chen X, Chen J, Li B, et al. PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: in vitro drug release and in vivo pharmacokinetics assessment. J Colloid Interface Sci. 2017;490:542–552. doi:10.1016/j.jcis.2016.11.089
  • Prasad S, Yadav VR, Sung B, et al. Ursolic acid inhibits growth and metastasis of human colorectal cancer in an orthotopic nude mouse model by targeting multiple cell signaling pathways: chemosensitization with capecitabine. Clin Cancer Res off J Am Assoc Cancer Res. 2012;18(18):4942–4953. doi:10.1158/1078-0432.CCR-11-2805
  • Fan L, Zhang B, Xu A, et al. Carrier-Free, Pure Nanodrug Formed by the Self-Assembly of an Anticancer Drug for Cancer Immune Therapy. Mol Pharm. 2018;15(6):2466–2478. doi:10.1021/acs.molpharmaceut.8b00444
  • Zheng J, Fan R, Wu H, et al. Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation. Nat Commun. 2020;11(1):3815. doi:10.1038/s41467-020-17712-5
  • Li J, Kuang Y, Gao Y, Du X, Shi J, Xu B. D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID). J Am Chem Soc. 2013;135(2):542–545. doi:10.1021/ja310019x
  • Pappas CG, Shafi R, Sasselli IR, et al. Dynamic peptide libraries for the discovery of supramolecular nanomaterials. Nat Nanotechnol. 2016;11(11):960–967. doi:10.1038/nnano.2016.169
  • Brown TE, Anseth KS. Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem Soc Rev. 2017;46(21):6532–6552. doi:10.1039/C7CS00445A
  • Luo Q, Jin Q, Su C, et al. Radiolabeled Rhein as Small-Molecule Necrosis Avid Agents for Imaging of Necrotic Myocardium. Anal Chem. 2017;89(2):1260–1266. doi:10.1021/acs.analchem.6b03959
  • Bian L, Gao M, Zhang D, et al. Synthesis and Biological Evaluation of Rhein-Based MRI Contrast Agents for in Vivo Visualization of Necrosis. Anal Chem. 2018;90(22):13249–13256. doi:10.1021/acs.analchem.8b01868
  • Liu J, Hu G, Xu R, et al. Rhein lysinate decreases the generation of β-amyloid in the brain tissues of Alzheimer’s disease model mice by inhibiting inflammatory response and oxidative stress. J Asian Nat Prod Res. 2013;15(7):756–763. doi:10.1080/10286020.2013.800972
  • Wang A, Jiang H, Liu Y, et al. Rhein induces liver cancer cells apoptosis via activating ROS-dependent JNK/Jun/caspase-3 signaling pathway. J Cancer. 2020;11(2):500–507. doi:10.7150/jca.30381
  • Jing KL, Zhen GG, Shen Y, Wu ZJ, fan RP. Encapsulation of Aconitine in Self-Assembled Licorice Protein Nanoparticles Reduces the Toxicity In Vivo. Nanoscale Res Lett. 2015;10(1):1–8. doi:10.1186/1556-276X-10-1
  • Wang J, Zhao H, Zhi K, Yang X. Exploration of the Natural Active Small-Molecule Drug-Loading Process and Highly Efficient Synergistic Antitumor Efficacy. ACS Appl Mater Interfaces. 2020;12(6):6827–6839. doi:10.1021/acsami.9b18443
  • Tian X, Wang P, Li T, et al. Self-assembled natural phytochemicals for synergistically antibacterial application from the enlightenment of traditional Chinese medicine combination. Acta Pharm Sin B. 2020;10(9):1784–1795. doi:10.1016/j.apsb.2019.12.014
  • Chen S, Chen Z, Wang Y, et al. Targeted delivery of Chinese herb pair-based berberine/tannin acid self-assemblies for the treatment of ulcerative colitis. J Adv Res. 2022;40:263–276. doi:10.1016/j.jare.2021.11.017
  • Singh N, Kumar M, Miravet JF, Ulijn RV, Escuder B. Peptide-Based Molecular Hydrogels as Supramolecular Protein Mimics. Chem Weinh Bergstr Ger. 2017;23(5):981–993.
  • Habibi N, Kamaly N, Memic A, Shafiee H. Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today. 2016;11(1):41–60. doi:10.1016/j.nantod.2016.02.004
  • Dehsorkhi A, Castelletto V, Hamley IW. Self-assembling amphiphilic peptides. J Pept Sci off Publ Eur Pept Soc. 2014;20(7):453–467.
  • Zhang L, Huang Y, Lindstrom AR, Lin TY, Lam KS, Li Y. Peptide-based materials for cancer immunotherapy. Theranostics. 2019;9(25):7807–7825. doi:10.7150/thno.37194
  • Eskandari S, Guerin T, Toth I, Stephenson RJ. Recent advances in self-assembled peptides: implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev. 2017;110-111:169–187. doi:10.1016/j.addr.2016.06.013
  • Wang Q, Jiang N, Fu B, Huang F, Liu J. Self-assembling peptide-based nanodrug delivery systems. Biomater Sci. 2019;7(12):4888–4911. doi:10.1039/C9BM01212E
  • Sis MJ, Webber MJ. Drug Delivery with Designed Peptide Assemblies. Trends Pharmacol Sci. 2019;40(10):747–762. doi:10.1016/j.tips.2019.08.003
  • Hsieh WH, Liaw J. Applications of cyclic peptide nanotubes (cPNTs). J Food Drug Anal. 2019;27(1):32–47. doi:10.1016/j.jfda.2018.09.004
  • Park JH, Kim HA, Park JH, Lee M. Amphiphilic peptide carrier for the combined delivery of curcumin and plasmid DNA into the lungs. Biomaterials. 2012;33(27):6542–6550. doi:10.1016/j.biomaterials.2012.05.046
  • Fu Y, Li B, Huang Z, Li Y, Yang Y. Terminal is important for the helicity of the self-assemblies of dipeptides derived from alanine. Langmuir ACS J Surf Colloids. 2013;29(20):6013–6017. doi:10.1021/la400910g
  • Tomasini C, Castellucci N. Peptides and peptidomimetics that behave as low molecular weight gelators. Chem Soc Rev. 2013;42(1):156–172. doi:10.1039/C2CS35284B
  • Zhang L, Wang X, Wang T, Liu M. Tuning soft nanostructures in self-assembled supramolecular gels: from morphology control to morphology-dependent functions. Small Weinh Bergstr Ger. 2015;11(9–10):64.
  • Rivas M, Del Valle LJ, Alemán C, Puiggalí J. Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite. Gels. 2019;5(1):14. doi:10.3390/gels5010014
  • Raza F, Zhu Y, Chen L, et al. Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomater Sci. 2019;7(5):2023–2036. doi:10.1039/C9BM00139E
  • Wei W, Meng C, Wang Y, et al. The interaction between self - assembling peptides and emodin and the controlled release of emodin from in-situ hydrogel. Cells Nanomed Biotechnol. 2019;47(1):3961–3975. doi:10.1080/21691401.2019.1673768
  • Zhang X, Parekh G, Guo B, et al. Polyphenol and self-assembly: metal polyphenol nanonetwork for drug delivery and pharmaceutical applications. Future Drug Discov. 2019;1(1):FDD7. doi:10.4155/fdd-2019-0001
  • Zhang X, Li Z, Yang P, et al. Polyphenol scaffolds in tissue engineering. Mater Horiz. 2021;8(1):145–167. doi:10.1039/D0MH01317J
  • Z J, L Z, J Y, Ma R, Jj R, C F. Polyphenol-Mediated Assembly for Particle Engineering. Acc Chem Res. 2020;53(7):45.
  • Li Q, Dong Z, Chen M, Feng L. Phenolic molecules constructed nanomedicine for innovative cancer treatment. Coord Chem Rev. 2021;439:213912. doi:10.1016/j.ccr.2021.213912
  • Feng W, Shi W, Liu S, et al. Fe(III)-Shikonin Supramolecular Nanomedicine for Combined Therapy of Tumor via Ferroptosis and Necroptosis. Adv Healthc Mater. 2022;11(2):90.
  • Wen Y, Hu J, Liu J, Li M. Degradable Carrier-Free Metal–Phenolic Network Theranostic Agent with Targeted Mitochondrial Damage for Efficient Cancer Theranostics. Chem Mater. 2021;33(17):7089–7099. doi:10.1021/acs.chemmater.1c02267
  • Bertleff-Zieschang N, Arifur Rahim M, Ju Y, et al. Biofunctional metal–phenolic films from dietary flavonoids. Chem Commun. 2017;53(6):1068–1071. doi:10.1039/C6CC08607A
  • Li B, Shao H, Gao L, Li H, Sheng H, Zhu L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review. Drug Deliv. 2022;29(1):2130–2161. doi:10.1080/10717544.2022.2094498
  • Wang M, Fu Y, Chen G, et al. Fabrication and characterization of carboxymethyl chitosan and tea polyphenols coating on zein nanoparticles to encapsulate β-carotene by anti-solvent precipitation method. Food Hydrocoll. 2018;77:577–587. doi:10.1016/j.foodhyd.2017.10.036
  • Shi F, Zhao JH, Liu Y, Wang Z, Zhang YT, Feng NP. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int J Nanomed. 2012;7:2033–2043. doi:10.2147/IJN.S30085
  • Wu Y, Lv S, Li Y, et al. Co-delivery of dual chemo-drugs with precisely controlled, high drug loading polymeric micelles for synergistic anti-cancer therapy. Biomater Sci. 2020;8(3):949–959. doi:10.1039/C9BM01662G
  • Fumoto S, Nishida K. Co-delivery Systems of Multiple Drugs Using Nanotechnology for Future Cancer Therapy. Chem Pharm Bull (Tokyo). 2020;68(7):603–612. doi:10.1248/cpb.c20-00008
  • Al Bostami RD, Abuwatfa WH, Husseini GA. Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. Nanomater Basel Switz. 2022;12(15):2672. doi:10.3390/nano12152672
  • Tagde P, Najda A, Nagpal K, et al. Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. Int J Mol Sci. 2022;23(5):2856. doi:10.3390/ijms23052856
  • Scioli Montoto S, Muraca G, Ruiz ME. Solid Lipid Nanoparticles for Drug Delivery: pharmacological and Biopharmaceutical Aspects. Front Mol Biosci. 2020;7:587997. doi:10.3389/fmolb.2020.587997
  • Rahman HS, Othman HH, Hammadi NI, et al. Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical Applications. Int J Nanomed. 2020;15:2439–2483. doi:10.2147/IJN.S227805
  • Luo CF, Yuan M, Chen MS, et al. Pharmacokinetics, tissue distribution and relative bioavailability of puerarin solid lipid nanoparticles following oral administration. Int J Pharm. 2011;410(1–2):138–144. doi:10.1016/j.ijpharm.2011.02.064
  • Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JEN, Omidfar K. Drug targeting using solid lipid nanoparticles. Chem Phys Lipids. 2014;181:56–61. doi:10.1016/j.chemphyslip.2014.03.006
  • Bayón-Cordero L, Alkorta I, Arana L. Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. Nanomater Basel Switz. 2019;9(3):474. doi:10.3390/nano9030474
  • Fathy Abd-Ellatef GE, Gazzano E, Chirio D, et al. Curcumin-Loaded Solid Lipid Nanoparticles Bypass P-Glycoprotein Mediated Doxorubicin Resistance in Triple Negative Breast Cancer Cells. Pharmaceutics. 2020;12(2):96. doi:10.3390/pharmaceutics12020096
  • Harish V, Tewari D, Mohd S, et al. Quality by Design Based Formulation of Xanthohumol Loaded Solid Lipid Nanoparticles with Improved Bioavailability and Anticancer Effect against PC-3 Cells. Pharmaceutics. 2022;14(11):2403. doi:10.3390/pharmaceutics14112403
  • Guo J, Xing X, Lv N, et al. Therapy for myocardial infarction: in vitro and in vivo evaluation of puerarin-prodrug and tanshinone co-loaded lipid nanoparticulate system. Biomed Pharmacother. 2019;120:109480. doi:10.1016/j.biopha.2019.109480
  • Wang L, Wang X, Shen L, et al. Paclitaxel and naringenin-loaded solid lipid nanoparticles surface modified with cyclic peptides with improved tumor targeting ability in glioblastoma multiforme. Biomed Pharmacother Biomedecine Pharmacother. 2021;138:111461. doi:10.1016/j.biopha.2021.111461
  • Stiepel RT, Duggan E, Batty CJ, Ainslie KM. Micro and nanotechnologies: the little formulations that could. Bioeng Transl Med. 2023;8(2):e10421. doi:10.1002/btm2.10421
  • Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Pharmaceutics. 2023;15(3):889. doi:10.3390/pharmaceutics15030889
  • Taléns-Visconti R, Díez-Sales O, De julián-ortiz JV, Nácher A. Nanoliposomes in Cancer Therapy: marketed Products and Current Clinical Trials. Int J Mol Sci. 2022;23(8):4249. doi:10.3390/ijms23084249
  • Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci off J Eur Fed Pharm Sci. 2013;48(3):416–427.
  • Kumar P, Huo P, Liu B. Formulation Strategies for Folate-Targeted Liposomes and Their Biomedical Applications. Pharmaceutics. 2019;11(8):381. doi:10.3390/pharmaceutics11080381
  • Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. doi:10.1016/j.heliyon.2022.e09394
  • Li Z, Zhang Y, Zhu C, et al. Folic acid modified lipid-bilayer coated mesoporous silica nanoparticles co-loading paclitaxel and tanshinone IIA for the treatment of acute promyelocytic leukemia. Int J Pharm. 2020;586:119576. doi:10.1016/j.ijpharm.2020.119576
  • Zhu Y, Wang A, Zhang S, et al. Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells. J Adv Res. 2023;49:159–173. doi:10.1016/j.jare.2022.09.007
  • Perumal S. Polymer Nanoparticles: synthesis and Applications. Polymers. 2022;14(24):5449. doi:10.3390/polym14245449
  • Amgoth C, Phan C, Banavoth M, et al. Polymer Properties: functionalization and Surface Modified Nanoparticles. Role Novel Drug Delivery Vehicles Nanobiomed IntechOpen. 2019.
  • Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric Nanoparticles: production, Characterization. Toxicol Ecotoxicol Mol Basel Switz. 2020;25(16):3731.
  • Truong NP, Whittaker MR, Mak CW, Davis TP. The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv. 2015;12(1):129–142. doi:10.1517/17425247.2014.950564
  • Khoshravan Azar L, Dadashpour M, Hashemi M, Zarghami N. Design and Development of Nanostructured Co Delivery of Artemisinin and Chrysin for Targeting hTERT Gene Expression in Breast Cancer Cell Line: possible Clinical Application in Cancer Treatment. Asian Pac J Cancer Prev APJCP. 2022;23(3):919–927. doi:10.31557/APJCP.2022.23.3.919
  • Afsharzadeh M, Hashemi M, Mokhtarzadeh A, Abnous K, Ramezani M. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Cells Nanomed Biotechnol. 2018;46(6):1095–1110. doi:10.1080/21691401.2017.1376675
  • Alven S, Aderibigbe BA. Efficacy of Polymer-Based Nanocarriers for Co-Delivery of Curcumin and Selected Anticancer Drugs. Nanomater Basel Switz. 2020;10(8):1556. doi:10.3390/nano10081556
  • Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. Cells Nanomed Biotechnol. 2019;47(1):1476–1487. doi:10.1080/21691401.2019.1601104
  • Kar A, Rout SR, Singh V, et al. Chapter 22 - Triblock polymeric micelles as an emerging nanocarrier for drug delivery. In: Kesharwani P, Greish K, editors. Polymeric Micelles for Drug Delivery. Woodhead Publishing Series in Biomaterials. Woodhead Publishing; 2022. 561–590.
  • Perumal S, Atchudan R, Lee W. A Review of Polymeric Micelles and Their Applications. Polymers. 2022;14(12):2510. doi:10.3390/polym14122510
  • Zhou L, Wu J, Sun Z, Wang W. Oxidation and Reduction Dual-Responsive Polymeric Prodrug Micelles Co-delivery Precisely Prescribed Paclitaxel and Honokiol for Laryngeal Carcinoma Combination Therapy. Front Pharmacol. 2022;13:934632. doi:10.3389/fphar.2022.934632
  • Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–324. doi:10.1007/s11060-010-0389-0
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi:10.1038/s41573-020-0090-8
  • Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. J Drug Target. 2018;26(8):617–632. doi:10.1080/1061186X.2017.1400553
  • Xu JJ, Zhang WC, Guo YW, Chen XY, Zhang YN. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv. 2022;29(1):664–678. doi:10.1080/10717544.2022.2039804
  • Canese R, Vurro F, Marzola P. Iron Oxide Nanoparticles as Theranostic Agents in Cancer Immunotherapy. Nanomater Basel Switz. 2021;11(8):1950. doi:10.3390/nano11081950
  • Hiremath CG, Heggnnavar GB, Kariduraganavar MY, Hiremath MB. Co-delivery of paclitaxel and curcumin to foliate positive cancer cells using Pluronic-coated iron oxide nanoparticles. Prog Biomater. 2019;8(3):155–168. doi:10.1007/s40204-019-0118-5