156
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Targeted Multi-Crystalline Manganese Oxide as a Tumor-Selective Nano-Sized MRI Contrast Agent for Early and Accurate Diagnosis of Tumors

, , , , , , & show all
Pages 527-540 | Received 31 Oct 2023, Accepted 11 Jan 2024, Published online: 17 Jan 2024

References

  • Ahmad R, Bouman CA, Buzzard GT, et al. Plug-and-play methods for magnetic resonance imaging: using denoisers for image recovery. IEEE Signal Process Mag. 2020;37:105–116. doi:10.1109/MSP.2019.2949470
  • Puntmann VO, Peker E, Chandrashekhar Y, et al. T1 mapping in characterizing myocardial disease: a comprehensive review. Circ Res. 2016;119:277–299. doi:10.1161/CIRCRESAHA.116.307974
  • Schramm C, Eaton J, Ringe KI, et al. Recommendations on the use of MRI in PSA-A position statement from the international psc study group. Hepatology. 2017;66:1675–1688. doi:10.1002/hep.29293
  • Yu Z, Han X, Zhang S, et al. MouseGAN++: unsupervised disentanglement and contrastive representation for multiple MRI modalities synthesis and structural segmentation of mouse brain. IEEE Trans Med Imaging. 2022;42:1197–1209. doi:10.1109/TMI.2022.3225528
  • Weiskopf N, Edwards LJ, Helms G, et al. Quantitative magnetic resonance imaging of brain anatomy and in vivo histology. Nat Rev Phys. 2021;60:443–452.
  • Chen X, Teng S, Li J, et al. Gadolinium (III)-chelated deformable mesoporous organosilica nanoparticles as magnetic resonance imaging contrast agent. Adv Mater. 2023;35:e2211578. doi:10.1002/adma.202211578
  • Zhang L, Yin F, Lu K, et al. Improving liver tumor image contrast and synthesizing novel tissue contrasts by adaptive multiparametric MRI fusion. Precis Radiat Oncol. 2022;6:190–198. doi:10.1002/pro6.1167
  • Lu Y, Feng J, Liang Z, et al. A tumor microenvironment dual responsive contrast agent for contrary contrast-magnetic resonance imaging and specific chemotherapy of tumors. Nanoscale Horiz. 2022;7:403–413. doi:10.1039/D1NH00632K
  • Zhao Z, Sun C, Bao J, et al. Surface manganese substitution in magnetite nanocrystals enhances T1 contrast ability by increasing electron Spin relaxation. J Mater Chem B. 2017;6:401–413. doi:10.1039/C7TB02954C
  • Carniato F, Ricci M, Tei L, et al. Novel nanogels loaded with Mn(II) chelates as effective and biologically stable MRI probes. Small;2023. e2302868. doi:10.1002/smll.202302868
  • Lu X, Zhou H, Liang Z, et al. Biodegradable and biocompatible exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging of tumors. J Nanobiotechnol. 2022;20:350. doi:10.1186/s12951-022-01562-y
  • Peng Y, Tsang S, Chou P. Chemical design of nanoprobes for T1-weighted magnetic resonance imaging. Mater Today Bio. 2016;218:112750.
  • Lu C, Xu X, Zhang T, et al. Facile synthesis of superparamagnetic nickel-doped iron oxide nanoparticles as high-performance T1 contrast agents for magnetic resonance imaging. J Mater Chem B. 2022;10:1623–1633. doi:10.1039/D1TB02572D
  • Green C, Jost G, Frenzel T, et al. The effect of gadolinium-based contrast agents on longitudinal changes of magnetic resonance imaging signal intensities and relaxation times in the aging rat brain. Invest Radiol. 2022;57:453–462. doi:10.1097/RLI.0000000000000857
  • Xu K, Liu H, Zhang J, et al. Improving longitudinal transversal relaxation of gadolinium chelate using silica coating magnetite nanoparticles. Int J Nanomed. 2019;14:7879–7889. doi:10.2147/IJN.S211974
  • Guo S, Xiao X, Wang X, et al. Reductive microenvironment responsive gadolinium-based polymers as potential safe MRI contrast agents. Biomater Sci. 2019;7:1919–1932. doi:10.1039/C8BM01103F
  • Gonzalez-Martin R, Palomar A, Quiñonero A, et al. The impact of essential trace elements on ovarian response and reproductive outcomes following single euploid embryo transfer. Int J Mol Sci. 2023;24:10968. doi:10.3390/ijms241310968
  • Hall AR, Geoghegan M. Polymers and biopolymers at interfaces. Rep Prog Phys. 2018;81:036601. doi:10.1088/1361-6633/aa9e9c
  • Jensen AI, Severin GW, Hansen AE, et al. Remote-loading of liposomes with manganese-52 and in vivo evaluation of the stabilities of 52Mn-DOTA and 64Cu-DOTA using radiolabelled liposomes and PET imaging. J Control Release. 2017;269:100–109. doi:10.1016/j.jconrel.2017.11.006
  • Sahar P, Soodabeh D, Nader R, et al. How advancing are mesoporous silica nanoparticles? A comprehensive review of the literature. Int J Nanomed. 2022;17:1803–1827. doi:10.2147/IJN.S353349
  • Xiao JM, Zhang GL, Xu X, et al. A pH-responsive platform combining chemodynamic therapy with limotherapy for simultaneous bioimaging and synergistic cancer therapy. Biomaterials. 2019;216:119254. doi:10.1016/j.biomaterials.2019.119254
  • Ni DL, Bu WB, Ehlerding EB, et al. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev. 2017;46:7438. doi:10.1039/c7cs00316a
  • Ananta JS, Godin B, Sethi R, et al. Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat Nanotechnol. 2010;5:815–821. doi:10.1038/NNANO.2010.203
  • Pierre VC, Harris SM, Pailloux SL. Comparing strategies in the design of responsive contrast agents for magnetic resonance imaging: a case study with copper and zinc. Acc Chem Res. 2018;51:342–351. doi:10.1021/acs.accounts.7b00301
  • Yang Y, Chen S, Li H, et al. Engineered paramagnetic graphene quantum dots with enhanced relaxivity for tumor imaging. Nano Lett. 2018;19:441–448. doi:10.1021/acs.nanolett.8b04252
  • Ndiaye D, Cieslik P, Wadepohl H, et al. Mn2+ bispidine complex combining exceptional stability, inertness, and MRI efficiency. J Am Chem Soc. 2022;144:22212–22220. doi:10.1021/jacs.2c10108
  • Si YC, Zhang GL, Wang D, et al. Nanostructure-enhanced water interaction to increase the dual-mode MR contrast performance of gadolinium-doped iron oxide nanoclusters. Chem Eng J. 2019;360:289–298. doi:10.1016/j.cej.2018.11.219
  • Cheng ZL, Thorek DL, Tsourkas A. Gadolinium-conjugated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew Chem Int Ed. 2010;49:346–350. doi:10.1002/anie.200905133
  • Sun Q, He J, Li X, et al. Misfit Dislocations at Ag/Mn3O4, Cu/MnO and Cu/Mn3O4 Interfaces. Acta Mater. 1998;46:111–126.
  • Li T, Xue B, Wang B, et al. Tubular Monolayer Superlattices of Hollow Mn3O4 Nanocrystals and Their Oxygen Reduction Activity. J Am Chem Soc. 2017;139:12133–12136. doi:10.1021/jacs.7b06587
  • Lin YS, Hung Y, Su JK, et al. Gadolinium(III)-incorporated nanosized mesoporous silica as potential magnetic resonance imaging contrast agents. J Phys Chem B. 2004;108:15608–15611. doi:10.1021/jp047829a
  • Cho HJ, Lee SJ, Park SJ, et al. Activatable iRGD-based peptide monolith: targeting, internalization, and fluorescence activation for precise tumor imaging. J Control Release. 2016;237:177–184. doi:10.1016/j.jconrel.2016.06.032
  • Zhang Z, Qian H, Huang J, et al. Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment. Int J Nanomed. 2018;13:4961–4975. doi:10.2147/IJN.S170148
  • Zhang YN, Liu Lu L, Li WL, et al. PDGFB-targeted functional MRI nanoswitch for activatable T1–T2 dual-modal ultra-sensitive diagnosis of cancer. J Nanobiotechnol. 2023;21:9. doi:10.1186/s12951-023-01769-7
  • Geng Z, Chen F, Wang X, et al. Combining Anti-PD-1 antibodies with Mn2+-Drug coordinated multifunctional nanoparticles for enhanced cancer therapy. Biomaterials. 2021;275:120897. doi:10.1016/j.biomaterials.2021.120897
  • Xiao J, Yan M, Zhou K, et al. A nanoselenium-coating biomimetic cytomembrane nanoplatform for mitochondrial targeted chemotherapy- and chemodynamic therapy through manganese and doxorubicin codelivery. J Nanobiotechnol. 2021;19:227. doi:10.1186/s12951-021-00971-9
  • Foster BA, Gingrich JR, Kwon ED, et al. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res. 1997;57:3325–3330.
  • Raina K, Blouin MJ, Singh RP, et al. Dietary feeding of silibinin inhibits prostate tumor growth and progression in transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 2007;67:11083–11091. doi:10.1158/0008-5472.CAN-07-2222
  • Zhang X, Chen J, Jiang Q, et al. Highly biosafe biomimetic stem cell membrane-disguised nanovehicles for cartilage regeneration. J Mater Chem B. 2020;8:8884–8893. doi:10.1039/D0TB01686A