113
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Carbon Dots Derived from Curcumae Radix and Their Heartprotective Effect

, , , , , , , ORCID Icon, , & show all
Pages 3315-3332 | Received 28 Oct 2023, Accepted 27 Mar 2024, Published online: 07 Apr 2024

References

  • Yang MJ, Linn BS, Zhang YM, Ren J. Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. Biochim Biophys Acta-Mol Basis Dis. 2019;1865(9):2293–2302. doi:10.1016/j.bbadis.2019.05.007
  • Song JL, Murugiah K, Hu S, et al. Incidence, predictors, and prognostic impact of recurrent acute myocardial infarction in China. Heart. 2021;107(4):313–318. doi:10.1136/heartjnl-2020-317165
  • Solomon R, Nowak R, Hudson M, Moyer M, Jacobsen G, McCord J. Is duration of symptoms predictive of acute myocardial infarction? Curr Probl Cardiol. 2021;46(3):100555. doi:10.1016/j.cpcardiol.2020.100555
  • Su Q, Liu Y, Lv XW, Dai RX, Yang XH, Kong BH. LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. Am J Physiol -Heart Circul Physiol. 2020;318(2):H332–H344. doi:10.1152/ajpheart.00444.2019
  • Mo XY, Zhao NN, Du XY, Bai LY, Liu JK. The protective effect of peony extract on acute myocardial infarction in rats. Phytomedicine. 2011;18(6):451–457. doi:10.1016/j.phymed.2010.10.003
  • Bai YD, Yang YR, Mu XP, et al. Hydrogen sulfide alleviates acute myocardial ischemia injury by modulating autophagy and inflammation response under oxidative stress. Oxid Med Cell Longev. 2018;2018:3402809. doi:10.1155/2018/3402809
  • Hundahl LA, Sattler SM, Skibsbye L, Diness JG, Tfelt-Hansen J, Jespersen T. Pharmacological blockade of small conductance Ca2+-activated K+ channels by ICA reduces arrhythmic load in rats with acute myocardial infarction. Pflugers Arch. 2017;469(5–6):739–750. doi:10.1007/s00424-017-1962-6
  • Alexopoulos D. Acute myocardial infarction late following stent implantation: incidence, mechanisms and clinical presentation. Int J Cardiol. 2011;152(3):295–301. doi:10.1016/j.ijcard.2011.01.017
  • Thiele H, Ohman EM, deWaha-Thiele S, Zeymer U, Desch S. Management of cardiogenic shock complicating myocardial infarction: an update 2019. Eur Heart J. 2019;40(32):2671–+. doi:10.1093/eurheartj/ehz363
  • Zheng B, Qi JY, Yang YK, et al. Mechanisms of cinnamic aldehyde against myocardial ischemia/hypoxia injury in vivo and in vitro: involvement of regulating PI3K/AKT signaling pathway. Biomed Pharmacother. 2022;147:112674. doi:10.1016/j.biopha.2022.112674
  • Jiang TC, Han FL, Gao GY, Liu M. Mangiferin exert cardioprotective and anti-apoptotic effects in heart failure induced rats. Life Sci. 2020;249:117476. doi:10.1016/j.lfs.2020.117476
  • Ke QJ, Liu F, Tang YX, et al. The protective effect of isosteviol sodium on cardiac function and myocardial remodelling in transverse aortic constriction rat. J Cell Mol Med. 2021;25(2):1166–1177. doi:10.1111/jcmm.16182
  • Ashuri M, Moztarzadeh F, Nezafati N, Hamedani AA, Tahriri M. Development of a composite based on hydroxyapatite and magnesium and zinc-containing sol-gel-derived bioactive glass for bone substitute applications. Mater Sci Eng C-Mater Biol Appl. 2012;32(8):2330–2339. doi:10.1016/j.msec.2012.07.004
  • Bonifacio BV, da Silva PB, Ramos MAD, Negri KMS, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomed. 2014;9:1–15.
  • Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed-Nanotechnol Biol Med. 2012;8(2):147–166. doi:10.1016/j.nano.2011.05.016
  • Gomes SLR, Dias A, Silva MMS, Silva BVM, Dutra RF. A carbon nanotube-based electrochemical immunosensor for cardiac troponin T. Microchem J. 2013;109:10–15. doi:10.1016/j.microc.2012.05.033
  • Abdorahim M, Rabiee M, Alhosseini SN, et al. Nanomaterials-based electrochemical immunosensors for cardiac troponin recognition: an illustrated review. Trac-Trends Anal Chem. 2016;82:337–347. doi:10.1016/j.trac.2016.06.015
  • Cui WG, Wang AJ, Zhao C, Zhu WQ. Editorial: nanotechnology in Cardiovascular Regenerative Medicine. Front Bioeng Biotechnol. 2020;8:608844. doi:10.3389/fbioe.2020.608844
  • Chintapula U, Chikate T, Sahoo D, et al. Immunomodulation in age-related disorders and nanotechnology interventions. Wiley Interdiscip Rev -Nanomed Nanobiotech. 2022;15(1):e1840. doi:10.1002/wnan.1840
  • Wang YJ, Chen J, Liu LM, et al. Novel metal doped carbon quantum dots/CdS composites for efficient photocatalytic hydrogen evolution. Nanoscale. 2019;11(4):1618–1625. doi:10.1039/C8NR05807E
  • Hu JJ, Zhu Y, Song HJ, Wang Y, Shan Y. Electrochemiluminescence from CdS Nanocrystals@Carbon Dots Composite Film. Chin J Inorg Chem. 2020;36(2):324–332.
  • Luo WK, Zhang LL, Yang ZY, et al. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnol. 2021;19(1):320. doi:10.1186/s12951-021-01072-3
  • Zhang Y, Wang SN, Lu F, et al. The neuroprotective effect of pretreatment with carbon dots from crinis carbonisatus (carbonized human hair) against cerebral ischemia reperfusion injury. J Nanobiotechnol. 2021;19(1):257. doi:10.1186/s12951-021-00908-2
  • Zhang ML, Cheng JJ, Zhang Y, et al. Green synthesis of Zingiberis rhizoma-based carbon dots attenuates chemical and thermal stimulus pain in mice. Nanomedicine. 2020;15(9):851–869. doi:10.2217/nnm-2019-0369
  • Lu F, Ma YR, Huang H, et al. Edible and highly biocompatible nanodots from natural plants for the treatment of stress gastric ulcers. Nanoscale. 2021;13(14):6809–6818. doi:10.1039/D1NR01099A
  • Lu F, Song YX, Huang H, et al. Fluorescent carbon dots with tunable negative charges for bio-imaging in bacterial viability assessment. Carbon. 2017;120:95–102. doi:10.1016/j.carbon.2017.05.039
  • Zhao Y, Lu F, Zhang Y. Water-soluble carbon dots in cigarette mainstream smoke: their properties and the behavioural, neuroendocrinological, and neurotransmitter changes they induce in mice. Int J Nanomed. 2021;16:2203–2217. doi:10.2147/IJN.S291670
  • Tao WY, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol. 2013;145(1):1–10. doi:10.1016/j.jep.2012.09.051
  • Bei W, Jing L, Chen N. Cardio protective role of wogonin loaded nanoparticle against isoproterenol induced myocardial infarction by moderating oxidative stress and inflammation. Colloid Surf B-Biointerfaces. 2020;185:110635. doi:10.1016/j.colsurfb.2019.110635
  • Zhang TP, Dang MY, Zhang WZ, Lin X. Gold nanoparticles synthesized from Euphorbia fischeriana root by green route method alleviates the isoprenaline hydrochloride induced myocardial infarction in rats. J Photochem Photobiol B-Biol. 2020;202:111705. doi:10.1016/j.jphotobiol.2019.111705
  • Stobinski L, Lesiak B, Malolepszy A, et al. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom. 2014;195:145–154. doi:10.1016/j.elspec.2014.07.003
  • Liu YL, Thibodeaux D, Gamble G, Bauer P, VanDerveer D. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity. Appl Spectrosc. 2012;66(8):983–986. doi:10.1366/12-06611
  • Lu WY, Li N, Chen WX, Yao YY. The role of multiwalled carbon nanotubes in enhancing the catalytic activity of cobalt tetraaminophthalocyanine for oxidation of conjugated dyes. Carbon. 2009;47(14):3337–3345. doi:10.1016/j.carbon.2009.07.055
  • Wei XJ, Li L, Liu JL, et al. Green synthesis of fluorescent carbon dots from gynostemma for bioimaging and antioxidant in zebrafish. ACS Appl Mater Interfaces. 2019;11(10):9832–9840. doi:10.1021/acsami.9b00074
  • Atchudan R, Edison T, Chakradhar D, Perumal S, Shim JJ, Lee YR. Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sensor Actuat B-Chem. 2017;246:497–509. doi:10.1016/j.snb.2017.02.119
  • Zhang ML, Cheng JJ, Hu J, et al. Green phellodendri Chinensis cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice. J Nanobiotechnol. 2021;19(1):105. doi:10.1186/s12951-021-00847-y
  • Carvalho A, Costa MCF, Marangoni VS, Ng PR, Nguyen TLH, Neto AHC. The degree of oxidation of graphene oxide. Nanomaterials. 2021;11(3):560. doi:10.3390/nano11030560
  • Yamada Y, Kim J, Matsuo S, Sato S. Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon. 2014;70:59–74. doi:10.1016/j.carbon.2013.12.061
  • Rosenthal D, Ruta M, Schlogl R, Kiwi-Minsker L. Combined XPS and TPD study of oxygen-functionalized carbon nanofibers grown on sintered metal fibers. Carbon. 2010;48(6):1835–1843. doi:10.1016/j.carbon.2010.01.029
  • Martin TN, Groenning BA, Murray HM, et al. ST-segment deviation analysis of the admission 12-lead electrocardiogram as an aid to early diagnosis of acute myocardial infarction with a cardiac magnetic resonance imaging gold standard. J Am Coll Cardiol. 2007;50(11):1021–1028. doi:10.1016/j.jacc.2007.04.090
  • Nestelberger T, Cullen L, Lindahl B, et al. Diagnosis of acute myocardial infarction in the presence of left bundle branch block. Heart. 2019;105(20):1559–1567. doi:10.1136/heartjnl-2018-314673
  • Galasko GIW, Basu S, Lahiri A, Senior R. Is echocardiography a valid tool to screen for left ventricular systolic dysfunction in chronic survivors of acute myocardial infarction? A comparison with radionuclide ventriculography. Heart. 2004;90(12):1422–1426. doi:10.1136/hrt.2003.027425
  • Dwivedi G, Janardhanan R, Hayat SA, Lim TK, Senior R. Improved prediction of outcome by contrast echocardiography determined left ventricular remodelling parameters compared to unenhanced echocardiography in patients following acute myocardial infarction. Eur J Echocardiogr. 2009;10(8):933–940. doi:10.1093/ejechocard/jep099
  • Lv A, Chen Q, Zhao C, et al. Long-wavelength (red to near-infrared) emissive carbon dots: key factors for synthesis, fluorescence mechanism, and applications in biosensing and cancer theranostics. Chin Chem Lett. 2021;32(12):3653–3664. doi:10.1016/j.cclet.2021.06.020
  • Wu JS, Zhang ML, Cheng JJ, et al. Effect of lonicerae japonicae flos carbonisata-derived carbon dots on rat models of fever and hypothermia induced by lipopolysaccharide. Int J Nanomed. 2020;15:4139–4149. doi:10.2147/IJN.S248467
  • Zhao YS, Zhang Y, Kong H, Cheng GL, Qu HH, Zhao Y. Protective effects of carbon dots derived from armeniacae semen amarum carbonisata against acute lung injury induced by lipopolysaccharides in rats. Int J Nanomed. 2022;17:1–14. doi:10.2147/IJN.S338886
  • Ao MY, Li X, Liao YJ, et al. Curcumae Radix: a review of its botany, traditional uses, phytochemistry, pharmacology and toxicology. J Pharm Pharmacol. 2022;74(6):779–792. doi:10.1093/jpp/rgab126
  • Feriani A, Khdhiri E, Tir M, et al. (E)-N ‘-(1-(7-Hydroxy-2-Oxo-2H-Chromen-3-Yl) Ethylidene) Benzohydrazide, a Novel Synthesized Coumarin, Ameliorates Isoproterenol-Induced Myocardial infarction in rats through Attenuating Oxidative Stress, Inflammation, and Apoptosis. Oxid Med Cell Longev. 2020;2020:2432918. doi:10.1155/2020/2432918
  • Zhang HW, Chen HY, Li J, et al. Hirudin protects against isoproternol-induced myocardial infraction by alleviating oxidative via an Nrf2 dependent manner. Int J Biol Macromol. 2020;162:425–435. doi:10.1016/j.ijbiomac.2020.06.097
  • Fan SR, Zhang JF, Xiao Q, et al. Cardioprotective effect of the polysaccharide from Ophiopogon japonicus on isoproterenol-induced myocardial ischemia in rats. Int J Biol Macromol. 2020;147:233–240. doi:10.1016/j.ijbiomac.2020.01.068
  • Wang DD, Lv LY, Xu Y, et al. Cardioprotection of panax notoginseng saponins against acute myocardial infarction and heart failure through inducing autophagy. Biomed Pharmacother. 2021;136:111287. doi:10.1016/j.biopha.2021.111287
  • Lu Y, Yang ML, Peng MZ, et al. Kuanxiong aerosol inhibits apoptosis and attenuates isoproterenol-induced myocardial injury through the mitogen-activated protein kinase pathway. J Ethnopharmacol. 2021;269:113757. doi:10.1016/j.jep.2020.113757
  • Yang YN, Ding ZH, Zhong RX, et al. Cardioprotective effects of a fructus aurantii polysaccharide in isoproterenol-induced myocardial ischemic rats. Int J Biol Macromol. 2020;155:995–1002. doi:10.1016/j.ijbiomac.2019.11.063
  • Meeran MFN, Azimullah S, Adeghate E, Ojha S. Nootkatone attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats. Phytomedicine. 2021;84:153405. doi:10.1016/j.phymed.2020.153405
  • Tao HJ, Yang XY, Wang WX, et al. Regulation of serum lipidomics and amino acid profiles of rats with acute myocardial ischemia by salvia miltiorrhiza and panax notoginseng herb pair. Phytomedicine. 2020;67:153162. doi:10.1016/j.phymed.2019.153162
  • Yang C, Zhang Y, Yang BF. MIAT, a potent CVD-promoting lncRNA. Cell Mol Life Sci. 2022;79(1):43. doi:10.1007/s00018-021-04046-8
  • Geng ZH, Huang L, Song MB, Song YM. Protective effect of a polysaccharide from Salvia miltiorrhiza on isoproterenol (ISO)-induced myocardial injury in rats. Carbohydr Polym. 2015;132:638–642. doi:10.1016/j.carbpol.2015.06.086
  • Viswanadha VP, Dhivya V, Beeraka NM, et al. The protective effect of piperine against isoproterenol-induced inflammation in experimental models of myocardial toxicity. Eur J Pharmacol. 2020;885:173524. doi:10.1016/j.ejphar.2020.173524
  • Zhao TJ, Wu W, Sui LH, et al. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater. 2022;7:47–72. doi:10.1016/j.bioactmat.2021.06.006