276
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Recent Advances of Emerging Metal-Containing Two-Dimensional Nanomaterials in Tumor Theranostics

, , &
Pages 805-824 | Received 30 Oct 2023, Accepted 15 Jan 2024, Published online: 24 Jan 2024

References

  • Chilakamarthi U, Giribabu L. Photodynamic therapy: past, present and future. Chem Rec. 2017;17(8):775–802. doi:10.1002/tcr.201600121
  • Zhang YQ, Liu WL, Luo XJ, et al. Novel self-assembled multifunctional nanoprobes for second-near-infrared-fluorescence-image-guided breast cancer surgery and enhanced radiotherapy efficacy. Adv Sci. 2023;10(10):2205294. doi:10.1002/advs.202205294
  • Wang L, Yin S, Yang J, et al. Moiré superlattice structure in two-dimensional catalysts: synthesis, property and activity. Small. 2023;19:2300165. doi:10.1002/smll.202300165
  • Kovalska E, Wu B, Liao L, et al. Electrochemical decalcification-exfoliation of two-dimensional siligene, sixgey: material characterization and perspectives for lithium-ion storage. ACS Nano. 2023;17(12):11374–11383. doi:10.1021/acsnano.3c00658
  • Lv Q, Tan J, Wang Z, et al. Ultrafast charge transfer in mixed-dimensional WO3-x nanowire/WSe2 heterostructure heterostructures for attomolar-level molecular sensing. Nat Commun. 2023;14(1):2717. doi:10.1038/s41467-023-38198-x
  • Sahoo BB, Pandey VS, Dogonchi AS, et al. A state-of-art review on 2D material-boosted metal oxide nanoparticle electrodes: supercapacitor applications. J Energy Storage. 2023;65:107335. doi:10.1016/j.est.2023.107335
  • Yang G, Liu F, Zhao J, et al. MXenes-based nanomaterials for biosensing and biomedicine. Coord Chem Rev. 2023;479:215002. doi:10.1016/j.ccr.2022.215002
  • Lu C, Li R, Miao Z, Wang F, Zha Z. Emerging metallenes: synthesis strategies, biological effects and biomedical applications. Chem Soc Rev. 2023;52(8):2833–2865. doi:10.1039/d2cs00586g
  • Xiong Z, Zhang X, White JC, et al. Transcriptome analysis reveals the growth promotion mechanism of enteropathogenic Escherichia coli induced by black phosphorus nanosheets. ACS Nano. 2023;17(4):3574–3586. doi:10.1021/acsnano.2c09964
  • Ning C, Bai S, Wang J, et al. Review of photo- and electro-catalytic multi-metallic layered double hydroxides. Coord Chem Rev. 2023;480:215008. doi:10.1016/j.ccr.2022.215008
  • Xiao Y, Xiong C, Chen MM, Wang S, Fu L, Zhang X. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem Soc Rev. 2023;52(4):1215–1272. doi:10.1039/d1cs01016f
  • Tang J, Huang C, Liu Y, et al. Metal-organic framework nanoshell structures: preparation and biomedical applications. Coord Chem Rev. 2023;490:215211. doi:10.1016/j.ccr.2023.215211
  • He Y, Li D, Wu L, et al. Metal-organic frameworks for gene therapy and detection. Adv Funct Mater. 2023;33(12):2212277. doi:10.1002/adfm.202212277
  • Peng G, Fadeel B. Understanding the bidirectional interactions between two-dimensional materials, microorganisms, and the immune system. Adv Drug Deliv Rev. 2022;188:114422. doi:10.1016/j.addr.2022.114422
  • Moharramnejad M, Malekshah RE, Ehsani A, et al. A review of recent developments of metal–organic frameworks as combined biomedical platforms over the past decade. Adv Colloid Interf Sci. 2023;316:102908. doi:10.1016/j.cis.2023.102908
  • Duan X, Liu Z, Xie Z, et al. Emerging monoelemental 2D materials (Xenes) for biosensor applications. Nano Res. 2023;16(5):7030–7052. doi:10.1007/s12274-023-5418-3
  • Mahadev Patil P, Poddar N, Parihar N, et al. Optoresponsive Pheophorbide-Silver based organometallic nanomaterials for high efficacy multimodal theranostics in Melanoma. Chem Eng J. 2023;470:144110. doi:10.1016/j.cej.2023.144110
  • Jiang J, Feng W, Wen Y, et al. Tuning 2D magnetism in cobalt monoxide nanosheets via in situ nickel-doping. Adv Mater. 2023;35(22):2301668. doi:10.1002/adma.202301668
  • Yang L, Tian B, Xie Y, et al. Oxygen-vacancy-rich piezoelectric BiO2-x nanosheets for augmented piezocatalytic, sonothermal, and enzymatic therapies. Adv Mater. 2023;35(29):e2300648. doi:10.1002/adma.202300648
  • Xie Z, Zhang B, Ge Y, et al. Chemistry, functionalization, and applications of recent monoelemental two-dimensional materials and their heterostructures. Chem Rev. 2022;122(1):1127–1207. doi:10.1021/acs.chemrev.1c00165
  • Yang Y, Hu T, Bian Y, et al. Coupling probiotics with 2D CoCuMo‐LDH nanosheets as a tumor‐microenvironment‐responsive platform for precise NIR‐II photodynamic therapy. Adv Mater. 2023;35(23):2211205. doi:10.1002/adma.202211205
  • Truong Hoang Q, Huynh KA, Nguyen Cao TG, et al. Piezocatalytic 2D WS2 nanosheets for ultrasound-triggered and mitochondria-targeted piezodynamic cancer therapy synergized with energy metabolism-targeted chemotherapy. Adv Mater. 2023;35(18):2300437. doi:10.1002/adma.202300437
  • Fan H, Guo Z. Tumor microenvironment-responsive manganese-based nanomaterials for cancer treatment. Coord Chem Rev. 2023;480:215027. doi:10.1016/j.ccr.2023.215027
  • Zhao Y, Wang S-B, Chen A-Z, Kankala RK. Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coord Chem Rev. 2022;472:214765. doi:10.1016/j.ccr.2022.214765
  • Xie Z, Fan T, An J, et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem Soc Rev. 2020;49(22):8065–8087. doi:10.1039/d0cs00215a
  • Li B, Luo Y, Zheng Y, Liu X, Tan L, Wu S. Two-dimensional antibacterial materials. Prog Mater Sci. 2022;130:100976. doi:10.1016/j.pmatsci.2022.100976
  • Du R, Wang Y, Cheng M, et al. Two-dimensional multiferroic material of metallic p-doped SnSe. Nat Commun. 2022;13(1):6130. doi:10.1038/s41467-022-33917-2
  • Zhang B, Fan T, Xie N, et al. Versatile applications of metal single-atom @ 2D material nanoplatforms. Adv Sci. 2019;6(21):1901787. doi:10.1002/advs.201901787
  • Wu Q, Liao J, Yang H. Recent advances in kaolinite nanoclay as drug carrier for bioapplications: a review. Adv Sci. 2023;10(25):2300672. doi:10.1002/advs.202300672
  • Zhu S, Liu Y, Gu Z, et al. Research trends in biomedical applications of two-dimensional nanomaterials over the last decade – a bibliometric analysis. Adv Drug Deliv Rev. 2022;188:114420. doi:10.1016/j.addr.2022.114420
  • Wang W, Chen C, Ying Y, et al. Smart PdH@MnO2 Yolk–Shell nanostructures for spatiotemporally synchronous targeted hydrogen delivery and oxygen-elevated phototherapy of melanoma. ACS Nano. 2022;16(4):5597–5614. doi:10.1021/acsnano.1c10450
  • Carrasco JA, Congost-Escoin P, Assebban M, et al. Antimonene: a tuneable post-graphene material for advanced applications in optoelectronics, catalysis, energy and biomedicine. Chem Soc Rev. 2023;52(4):1288–1330. doi:10.1039/d2cs00570k
  • Lin Y-C, Torsi R, Younas R, et al. Recent advances in 2D material theory, synthesis, properties, and applications. ACS Nano. 2023;17(11):9694–9747. doi:10.1021/acsnano.2c12759
  • Sakthivel R, Keerthi M, Chung R-J, He J-H. Heterostructures of 2D materials and their applications in biosensing. Prog Mater Sci. 2023;132:101024. doi:10.1016/j.pmatsci.2022.101024
  • Fan T, Yan L, He S, et al. Biodistribution, degradability and clearance of 2D materials for their biomedical applications. Chem Soc Rev. 2022;51(18):7732–7751. doi:10.1039/d1cs01070k
  • Qiu M, Wang D, Huang H, et al. A regioselectively Oxidized 2D Bi/BiOx lateral nano-heterostructure for hypoxic photodynamic therapy. Adv Mater. 2021;33(49):2102562. doi:10.1002/adma.202102562
  • Yang D, Yang G, Yang P, et al. Assembly of au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy. Adv Funct Mater. 2017;27(18). doi:10.1002/adfm.201700371
  • Chang M, Dai X, Dong C, et al. Two-dimensional persistent luminescence “optical battery” for autophagy inhibition-augmented photodynamic tumor nanotherapy. Nano Today. 2022:42. doi:10.1016/j.nantod.2021.101362
  • Shen W, Hu T, Liu X, et al. Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy. Nat Commun. 2022;13(1):3384. doi:10.1038/s41467-022-31106-9
  • Hu T, Shen W, Meng F, et al. Boosting the sonodynamic cancer therapy performance of 2D layered double hydroxide nanosheet-based sonosensitizers via crystalline-to-amorphous phase transformation. Adv Mater. 2023;35(17):e2209692. doi:10.1002/adma.202209692
  • Liu SY, Xu Y, Yang H, et al. Ultrathin 2D Copper(I) 1,2,4-triazolate coordination polymer nanosheets for efficient and selective gene silencing and photodynamic therapy. Adv Mater. 2021;33(18):2100849. doi:10.1002/adma.202100849
  • Ma W, Zhang H, Li S, et al. A multifunctional nanoplatform based on Fenton-like and Russell reactions of cu, mn bimetallic ions synergistically enhanced ros stress for improved chemodynamic therapy. ACS Biomater Sci Eng. 2022;8(3):1354–1366. doi:10.1021/acsbiomaterials.1c01605
  • Wang C, Xue F, Wang M, An L, Wu D, Tian Q. 2D Cu-Bipyridine MOF nanosheet as an agent for colon cancer therapy: a three-in-one approach for enhancing chemodynamic therapy. ACS Appl Mater Interf. 2022;14(34):38604–38616. doi:10.1021/acsami.2c11999
  • Chen Z, Wu Y, Yao Z, et al. 2D copper (II) metalated metal-organic framework nanocomplexes for dual-enhanced photodynamic therapy and amplified antitumor immunity. ACS Appl Mater Interf. 2022;14(39):44199–44210. doi:10.1021/acsami.2c12990
  • Kang Y, Mao Z, Wang Y, et al. Design of a two-dimensional interplanar heterojunction for catalytic cancer therapy. Nat Commun. 2022;13(1):2425. doi:10.1038/s41467-022-30166-1
  • Ren X, Liu W, Zhou H, et al. Biodegradable 2D GeP nanosheets with high photothermal conversion efficiency for multimodal cancer theranostics. Chem Eng J. 2022:431. doi:10.1016/j.cej.2021.134176
  • Ge M, Guo H, Zong M, et al. Bandgap-engineered germanene nanosheets as an efficient photodynamic agent for cancer therapy. Angew Chem Int Ed Engl. 2023:62. doi:10.1002/anie.202215795
  • Zhao J, Wu H, Zhao J, et al. 2D LDH-MoS2 clay nanosheets: synthesis, catalase-mimic capacity, and imaging-guided tumor photo-therapy. J Nanobiotechnology. 2021;19(1):36. doi:10.1186/s12951-020-00763-7
  • Ji X, Ge L, Liu C, et al. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nat Commun. 2021;12(1):1124. doi:10.1038/s41467-021-21436-5
  • Xu Y, Li C, Wu X, et al. Sheet-like 2D Manganese (IV) Complex with High Photothermal Conversion Efficiency. J Am Chem Soc. 2022;144(41):18834–18843. doi:10.1021/jacs.2c04734
  • Hu T, Xue B, Meng F, et al. Preparation of 2D Polyaniline/MoO3-x superlattice nanosheets via intercalation-induced morphological transformation for efficient chemodynamic therapy. Adv Healthc Mater. 2023:12. doi:10.1002/adhm.202202911
  • Qiu M, Duo Y, Liang W, et al. Nanopoxia: targeting cancer hypoxia by antimonene‐based nanoplatform for precision cancer therapy. Adv Funct Mater. 2021;31(42). doi:10.1002/adfm.202104607
  • Wu H, Wu F, Zhou T, et al. Activatable autophagy inhibition-primed chemodynamic therapy via targeted sandwich-like two-dimensional nanosheets. Chem Eng J. 2022:431. doi:10.1016/j.cej.2021.133470
  • Lin G, Nash GT, Luo T, et al. Two-dimensional nanosonosensitizers facilitate energy transfer to enhance sonodynamic therapy. Adv Mater. 2023;35:2212069. doi:10.1002/adma.202212069
  • Liu G, Zou J, Tang Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Interf. 2017;9(46):40077–40086. doi:10.1021/acsami.7b13421
  • Ma L, Huang H, Feng W, et al. 2D Catalytic, Chemodynamic, and Ferroptotic Vermiculite Nanomedicine. Adv Funct Mater. 2022;32(51). doi:10.1002/adfm.202208220
  • Nie Y, Chen W, Kang Y, et al. Two-dimensional porous vermiculite-based nanocatalysts for synergetic catalytic therapy. Biomaterials. 2023;295:122031. doi:10.1016/j.biomaterials.2023.122031
  • Hang L, Zhang T, Wen H, et al. Controllable photodynamic performance via an acidic microenvironment based on two-dimensional metal-organic frameworks for photodynamic therapy. Nano Res. 2020;14(3):660–666. doi:10.1007/s12274-020-3093-1
  • Gao R, Mei X, Yan D, et al. Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nat Commun. 2018;9(1):2798. doi:10.1038/s41467-018-05223-3
  • Chen Y, Fan Z, Zhang Z, et al. Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev. 2018;118(13):6409–6455. doi:10.1021/acs.chemrev.7b00727
  • Xing L, Jin Y, Weng Y, et al. Top-down synthetic strategies toward single atoms on the rise. Matter. 2022;5(3):788–807. doi:10.1016/j.matt.2021.12.015
  • Lin S, Yang M, Chen J, et al. Two-Dimensional FePS3 nanosheets as an integrative sonosensitizer/nanocatalyst for efficient nanodynamic tumor therapy. Small. 2023;19(8):2204992. doi:10.1002/smll.202204992
  • Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev. 2021;50(20):11381–11485. doi:10.1039/d0cs01138j
  • Islam MA, Serles P, Kumral B, et al. Exfoliation mechanisms of 2D materials and their applications. Appl Phys Rev. 2022;9(4). doi:10.1063/5.0090717
  • Zheng W, Lee LYS. Beyond sonication: advanced exfoliation methods for scalable production of 2D materials. Matter. 2022;5(2):515–545. doi:10.1016/j.matt.2021.12.010
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:(5696):666–9. doi:10.1126/science.1102896
  • Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol. 2008;3(9):563–568. doi:10.1038/nnano.2008.215
  • Liu L, Shen Z, Yi M, Zhang X, Ma S. A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv. 2014;4(69):36464–36470. doi:10.1039/C4RA05635C
  • Yi M, Shen Z. Kitchen blender for producing high-quality few-layer graphene. Carbon. 2014;78:622–626. doi:10.1016/j.carbon.2014.07.035
  • Stankovich S, Dikin DA, Piner RD, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–1565. doi:10.1016/j.carbon.2007.02.034
  • Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano. 2012;6(2):1322–1331. doi:10.1021/nn204153h
  • Sun Z, Liao T, Dou Y, et al. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat Commun. 2014;5:3813. doi:10.1038/ncomms4813
  • Shi W, Song S, Zhang H. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev. 2013;42(13):5714–5743. doi:10.1039/c3cs60012b
  • Duan H, Yan N, Yu R, et al. Ultrathin rhodium nanosheets. Nat Commun. 2014;5:3093. doi:10.1038/ncomms4093
  • Tan C, Zhang H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat Commun. 2015;6:7873. doi:10.1038/ncomms8873
  • Badr HO, Montazeri K, El-Melegy T, et al. Scalable, inexpensive, one-pot, facile synthesis of crystalline two-dimensional birnessite flakes. Matter. 2022;5(7):2365–2381. doi:10.1016/j.matt.2022.05.038
  • Kim J-E, J-H O, Kotal M, et al. Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials. Nano Today. 2017;14:100–123. doi:10.1016/j.nantod.2017.04.008
  • Wu Z, Li Y, Liu J, et al. Colloidal self-assembly of catalytic copper nanoclusters into ultrathin ribbons. Angew Chem Int Ed. 2014;53(45):12196–12200. doi:10.1002/anie.201407390
  • Wu Z, Liu J, Li Y, et al. Self-Assembly of Nanoclusters into Mono-, Few-, and Multilayered Sheets via Dipole-Induced Asymmetric van der Waals Attraction. ACS Nano. 2015;9(6):6315–6323. doi:10.1021/acsnano.5b01823
  • Cheng W, He J, Yao T, et al. Half-unit-cell alpha-Fe2O3 semiconductor nanosheets with intrinsic and robust ferromagnetism. J Am Chem Soc. 2014;136(29):10393–10398. doi:10.1021/ja504088n
  • Yang Y, Jia L, Wang D, Zhou J. Advanced Strategies in Synthesis of Two-Dimensional Materials with Different Compositions and Phases. Small Methods. 2023;7(4):2201585. doi:10.1002/smtd.202201585
  • Bauer T, Zheng Z, Renn A, et al. Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew Chem Int Ed. 2011;50(34):7879–7884. doi:10.1002/anie.201100669
  • Xu L, Zhou X, Yu Y, et al. Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface Schiff-base coupling. ACS Nano. 2013;7(9):8066–8073. doi:10.1021/nn403328h
  • Hong YL, Liu Z, Wang L, et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science. 2020;369(6504):670–674. doi:10.1126/science.abb7023
  • Xu X, Zhong T, Zuo N, et al. High-TC two-dimensional ferroelectric CuCrS2 grown via chemical vapor deposition. ACS Nano. 2022;16(5):8141–8149. doi:10.1021/acsnano.2c01470
  • Rubio-Giménez V, Arnauts G, Wang M, et al. Chemical vapor deposition and high-resolution patterning of a highly conductive two-dimensional coordination polymer film. J Am Chem Soc. 2023;145(1):152–159. doi:10.1021/jacs.2c09007
  • Chen C, Wu C, Yu J, et al. Photodynamic-based combinatorial cancer therapy strategies: tuning the properties of nanoplatform according to oncotherapy needs. Coord Chem Rev. 2022;461:214495. doi:10.1016/j.ccr.2022.214495
  • R-L G, Yan P-N, Liu Y, et al. Recent advances and clinical potential of near infrared photothermal conversion materials for photothermal hepatocellular carcinoma therapy. Adv Funct Mater. 2023:2301138. doi:10.1002/adfm.202301138
  • Ouyang J, Zhang L, Li L, et al. Cryogenic exfoliation of 2D stanene nanosheets for cancer theranostics. Nanomicro Lett. 2021;13(1):90. doi:10.1007/s40820-021-00619-1
  • Yin H, Zhou B, Zhao C, et al. 2D core/shell‐structured mesoporous silicene@Silica for targeted and synergistic NIR‐II‐induced photothermal ablation and hypoxia‐activated chemotherapy of tumors. Adv Funct Mater. 2021;31(24). doi:10.1002/adfm.202102043
  • Zhou G, Li M. Biodegradable copper telluride nanosheets for redox-homeostasis breaking-assisted chemodynamic cancer therapy boosted by mild-photothermal effect. Chem Eng J. 2022;450:138348. doi:10.1016/j.cej.2022.138348
  • Wang X, Wang X, Yue Q, et al. Liquid exfoliation of TiN nanodots as novel sonosensitizers for photothermal-enhanced sonodynamic therapy against cancer. Nano Today. 2021;39:101170. doi:10.1016/j.nantod.2021.101170
  • Yin H, Sun L, Pu Y, et al. Ultrasound-Controlled CRISPR/Cas9 system augments sonodynamic therapy of hepatocellular carcinoma. ACS Cent Sci. 2021;7(12):2049–2062. doi:10.1021/acscentsci.1c01143
  • Dong Y, Dong S, Liu B, et al. 2D piezoelectric Bi2 MoO6 nanoribbons for GSH-enhanced sonodynamic therapy. Adv Mater. 2021;33(51). doi:10.1002/adma.202106838
  • Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130(33):10876–10877. doi:10.1021/ja803688x
  • Zhang Y, Fang J, Ye S, et al. A hydrogen sulphide-responsive and depleting nanoplatform for cancer photodynamic therapy. Nat Commun. 2022;13(1):1685. doi:10.1038/s41467-022-29284-7
  • Lu H, Zada S, Tang S, et al. Artificial photoactive chlorophyll conjugated vanadium carbide nanostructure for synergistic photothermal/photodynamic therapy of cancer. J Nanobiotechnology. 2022;20(1):121. doi:10.1186/s12951-022-01331-x
  • Zhang Q, Guo Q, Chen Q, et al. Highly Efficient 2D NIR-II Photothermal Agent with Fenton Catalytic Activity for Cancer Synergistic Photothermal-Chemodynamic Therapy. Adv Sci. 2020;7(7):1902576. doi:10.1002/advs.201902576
  • Pan Y, Zhu Y, Xu C, et al. Biomimetic yolk–shell nanocatalysts for activatable dual-modal-image-guided triple-augmented chemodynamic therapy of cancer. ACS Nano. 2022;16(11):19038–19052. doi:10.1021/acsnano.2c08077
  • Murali A, Lokhande G, Deo KA, et al. Emerging 2D nanomaterials for biomedical applications. Mater Today. 2021;50:276–302. doi:10.1016/j.mattod.2021.04.020
  • Fang X, Wu X, Li Z, et al. Biomimetic Anti-PD-1 Peptide-Loaded 2D FePSe3 nanosheets for efficient photothermal and enhanced immune therapy with multimodal MR/PA/thermal imaging. Adv Sci. 2021;8(2):2003041. doi:10.1002/advs.202003041
  • Duan H, Chang M, Lin H, et al. Two-dimensional silicene photodynamic tumor-targeting nanomedicine. Mater Today Bio. 2022;16:100393. doi:10.1016/j.mtbio.2022.100393
  • Liu Y, Li X, Shi Y, et al. Two-dimensional intermetallic PtBi/Pt core/shell nanoplates overcome tumor hypoxia for enhanced cancer therapy. Nanoscale. 2021;13(33):14245–14253. doi:10.1039/d1nr02561a
  • Tang L, Li J, Pan T, et al. Versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives. Theranostics. 2022;12(5):2290–2321. doi:10.7150/thno.69628
  • Ni N, Zhang X, Ma Y, et al. Biodegradable two-dimensional nanomaterials for cancer theranostics. Coord Chem Rev. 2022;458:214415. doi:10.1016/j.ccr.2022.214415
  • Liu Y, Li J, Chen M, et al. Palladium-based nanomaterials for cancer imaging and therapy. Theranostics. 2020;10(22):10057–10074. doi:10.7150/thno.45990
  • He E, Qiu R, Cao X, et al. Elucidating toxicodynamic differences at the molecular scale between ZnO Nanoparticles and ZnCl 2 in enchytraeus crypticus via nontargeted metabolomics. Environ Sci Technol. 2020;54(6):3487–3498. doi:10.1021/acs.est.0c00663
  • Liao C, Jin Y, Li Y, et al. Interactions of zinc oxide nanostructures with mammalian cells: cytotoxicity and photocatalytic toxicity. Int J Mol Sci. 2020;21(17):6305. doi:10.3390/ijms21176305