93
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Potential Exploration of Biocompatible Carbon-Coated MoSe2 Nanoparticles for Exploration of the Photothermal Potential in the Treatment of Human Choriocarcinoma

ORCID Icon, , , , , ORCID Icon & show all
Pages 2359-2375 | Received 14 Oct 2023, Accepted 03 Feb 2024, Published online: 06 Mar 2024

References

  • Silverberg SGKRJTAJo SP. Tumors of the uterine corpus and gestational trophoblastic disease. Atlas Tumor Pathol. 1993;17:1300–1301.
  • Chen X, Wright JD, Abellar RG, et al. Cytological features of choricarcinoma in ap smear: a case report and literature review. Diagn Cytopathol. 2016;44(4):324–328. doi:10.1002/dc.23417
  • Yelian FD, Liu A, Todt JC, et al. Expression and function of autocrine motility factor receptor in human choriocarcinoma. Gynecologic Oncol. 1996;62(2):159–165. doi:10.1006/gyno.1996.0209
  • Chen J, Ning C, Zhou Z, et al. Nanomaterials as photothermal therapeutic agents. Pro Mater Sci. 2019;99:1–26. doi:10.1016/j.pmatsci.2018.07.005
  • Han HS, Choi KY. Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications. Biomedicines. 2021;9(3):305. doi:10.3390/biomedicines9030305
  • Jiang Z, Li T, Cheng H, et al. Nanomedicine potentiates mild photothermal therapy for tumor ablation. Asian J Pharm Sci. 2021;16(6):738–761. doi:10.1016/j.ajps.2021.10.001
  • Lakshmanan SB, Zou X, Hossu M, Ma L, Yang C, Chen W. Local field enhanced Au/CuS Nanocomposites as efficient photothermal transducer agents for cancer treatment. J Biomed Nanotechnol. 2012;8(6):883–890. doi:10.1166/jbn.2012.1486
  • Wang J, Wu X, Shen P, et al. Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment. Int j Nanomed. 2020;15:1903–1914. doi:10.2147/IJN.S239751
  • Yi X, Duan Q-Y, Wu F-G. Low-temperature photothermal therapy: strategies and applications. Research. 2021;2021. doi:10.34133/2021/9816594
  • Yun WS, Park J-H, Lim D-K, Ahn C-H, Sun I-C, Kim K. How did conventional nanoparticle-mediated photothermal therapy become ”hot” in combination with cancer immunotherapy? Cancers. 2022;15(1):14. doi:10.3390/cancers15010014
  • Zhang L, Forgham H, Huang X, et al. All-in-one inorganic nanoagents for near-infrared-II photothermal- based cancer theranostics. Mater Today Adv. 2022;3:14.
  • Zhang L, Oudeng G, Wen F, Liao G. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomater Res. 2022;26(1):26. doi:10.1186/s40824-022-00269-3
  • He L, Nie T, Xia X, et al. Designing bioinspired 2D MoSe2 nanosheet for efficient photothermal-triggered cancer immunotherapy with reprogramming tumor-associated macrophages. Adv Funct Mater. 2019;29:2.
  • Wang Y, Zhang F, Wang Q, Yang P, Lin H, Qu F. Hierarchical MoSe2 nanoflowers as novel nanocarriers for NIR-light-mediated synergistic photo-thermal/dynamic and chemo-therapy. Nanoscale. 2018;10(30):14534–14545. doi:10.1039/C8NR04538K
  • Wang Y, Zhao J, Chen Z, et al. Construct of MoSe2/Bi2Se3 nanoheterostructure: multimodal CT/PT imaging-guided PTT/PDT/chemotherapy for cancer treating. Biomaterials. 2019;198:217. doi:10.1016/j.biomaterials.2018.11.030
  • Yuwen L, Zhou J, Zhang Y, et al. Aqueous phase preparation of ultrasmall MoSe 2 nanodots for efficient photothermal therapy of cancer cells. Nanoscale. 2016;8(5):2720–2726. doi:10.1039/C5NR08166A
  • Gao F, Zhang T, Miao Y, et al. Mild hyperthermia synergized chemotherapy by Bi2Se3/MoSe2 nanosaucers for cancer treatment with negligible thermal resistance. Nano Res. 2022;15(9):8270–8280. doi:10.1007/s12274-022-4470-8
  • Zhao J, Zhang Y, Zhang J, et al. Synthetic and Biodegradable Molybdenum (IV) Diselenide Triggers the Cascade Photo- and Immunotherapy of Tumor. Adv Healthcare Mater. 2022;2:11 doi:10.1002/adhm.202200524.
  • Liu Y, Wei C, Lin A, et al. Responsive functionalized MoSe2 nanosystem for highly efficient synergistic therapy of breast cancer. Colloids Surf B Biointerfaces. 2020;3:189.
  • Zhang S, Zhang C, Jia Y, et al. Sandwich-type electrochemical immunosensor based on Au@Pt DNRs/NH2-MoSe2 NSs nanocomposite as signal amplifiers for the sensitive detection of alpha-fetoprotein. Bioelectrochemistry. 2019;128:140–147. doi:10.1016/j.bioelechem.2019.03.012
  • Xie P, Zhang L, Shen H, et al. Biodegradable MoSe2-polyvinylpyrrolidone nanoparticles with multi-enzyme activity for ameliorating acute pancreatitis. J Nanobiotechnol. 2022;20(1):113. doi:10.1186/s12951-022-01288-x
  • Wang L, Hou T, Li Y, Lu H, Gao LJFi C. Lubrication performances of carbon-doped MoSe2 nanoparticles and their biocompatibility characterization in vitro. Front Chem. 2021;8:580151. doi:10.3389/fchem.2020.580151
  • Yu YJ, Qing M, Ma YD, Polydopamine assembled stable core-shell nanoworms-DNAzyme probe for selective detection of Pb2+ and in livinig cells imaging. Talanta. 2023; 253: 123984. doi:10.1016/j.talanta.2022.123984
  • Qi F, Liu R. Tumor-Targeted and Biocompatible MoSe2 Nanodots@Albumin nanospheres as a dual-modality therapy agent for synergistic photothermal radiotherapy. Nanoscale Res Lett. 2019;14(1):67. doi:10.1186/s11671-019-2896-z
  • Chen R, Guo CC, Lan GL, Luo P, Yi, JM, Wei, W. Highly sensitive surface plasmon resonance sensor with surface modified MoSe2/ZnO composite film for non-enzymatic glucose detection. Biosens Bioelectron. 2023; 237: 115469. doi:10.1016/j.bios.2023.115469
  • Lin G, Zhang M. Ligand chemistry in antitumor theranostic nanoparticles. Acc. Chem. Res. 2023;56(12):1578–1590. doi:10.1021/acs.accounts.3c00151
  • Huang XW, Wei JJ, Liu T, Zhang XL, Bai S, Yang HJN. Silk fibroin-assisted exfoliation and functionalization of transition metal dichalcogenide nanosheets for antibacterial wound dressings. Nanoscale. 2017;9(44):17193–17198. doi:10.1039/C7NR06807G
  • Chen J, Li X, Liu X, et al. Hybrid MoSe 2 –indocyanine green nanosheets as a highly efficient phototheranostic agent for photoacoustic imaging guided photothermal cancer therapy. Biomat Sci. 2018;6(6):1503–1516. doi:10.1039/C8BM00104A
  • Gao L, Fan Y-Z, Zhang T-H, et al. Biocompatible carbon-doped MoSe 2 nanoparticles as a highly efficient targeted agent for human renal cell carcinoma. RSC Adv. 2019;9(20):11567–11575. doi:10.1039/C9RA01029G
  • Wang C, Bai J, Liu Y, Jia X, Jiang X. Polydopamine coated selenide molybdenum: a new photothermal nanocarrier for highly effective chemo-photothermal synergistic therapy. ACS Biomater Sci Eng. 2016;2(11):2011–2017. doi:10.1021/acsbiomaterials.6b00416
  • Qin L, Gan J, Niu D, Interfacial-confined coordination to single-atom nanotherapeutics. Nat Commun. 2022;13 (1) :91. doi:10.1038/s41467-021-27640-7.
  • Love MI, Huber W, Anders SJGB. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8
  • Li Y, Lu H, Liu Q, Qin L, Dong G. A facile method to enhance the tribological performances of MoSe2 nanoparticles as oil additives. Tribol Int. 2019;137:22–29. doi:10.1016/j.triboint.2019.04.029
  • Lu H, Chen L, Liu Q, Li Y, Gao L. Tribological properties of biocompatible molybdenum selenide nanoparticles as water lubrication additives for ultra-high molecular weight polyethylene/304 stainless steel contact. Mater Chem Phys. 2021;272:125053. doi:10.1016/j.matchemphys.2021.125053
  • Tang H, Dou K, Kaun -C-C, Kuang Q, Yang S. MoSe 2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies. J Mater Chem A. 2014;2(2):360–364. doi:10.1039/C3TA13584E
  • Pan J, Zhu X, Chen X, Zhao Y, Liu J. Gd 3+ -Doped MoSe 2 nanosheets used as a theranostic agent for bimodal imaging and highly efficient photothermal cancer therapy. Biomater Sci. 2018;6(2):372–387. doi:10.1039/C7BM00894E
  • Vishnu N, Badhulika S. Single step synthesis of MoSe 2 −MoO 3 heterostructure for highly sensitive amperometric detection of nitrite in water samples of industrial areas. Electroanalysis. 2019;31(12):2410–2416. doi:10.1002/elan.201900310
  • Kaur R, Singh KP, Tripathi SK. Study of linear and non-linear optical responses of MoSe2-PMMA nanocomposites. J Material Sci Material Electro. 2020;31(22):19974–19988. doi:10.1007/s10854-020-04520-2
  • Qin F, Hu H, Jiang Y, et al. Mesoporous MoSe2 /C composite as anode material for sodium/lithium ion batteries. J Electroanal Chem. 2018; 823; 67–72. doi:10.1016/j.jelechem.2018.05.023
  • Yousaf M, Wang Y, Chen Y, Wang Z, Han RP. A 3D Trilayered CNT/MoSe 2 /C Heterostructure with an Expanded MoSe2 Interlayer Spacing for an Efficient Sodium Storage. Adv Energy Material. 2019;9:1900567.
  • Xin S, Liu Z, Ma L, et al. Visualization of the electrocatalytic activity of three-dimensional MoSe2@reduced graphene oxide hybrid nanostructures for oxygen reduction reaction. Nano Res. 2016;9(12):3795–3811. doi:10.1007/s12274-016-1249-9
  • Lei Z, Xu S, Wu P. Ultra-thin and porous MoSe 2 nanosheets: facile preparation and enhanced electrocatalytic activity towards the hydrogen evolution reaction. Phys Chem Chem Phys. 2016;18(1):70–74. doi:10.1039/C5CP06483J
  • Wang H, Kong D, Johanes P, et al. MoSe 2 and WSe 2 Nanofilms with Vertically Aligned Molecular Layers on Curved and Rough Surfaces. Nano Lett. 2013;13(7):3426–3433. doi:10.1021/nl401944f
  • Xue N, Diao P. Composite of Few-Layered MoS 2 Grown on Carbon Black: tuning the Ratio of Terminal to Total Sulfur in MoS 2 for Hydrogen Evolution Reaction. J Phys Chem C. 2017;121(27):14413–14425. doi:10.1021/acs.jpcc.7b02522
  • Yan Y, Sun B, Ma DJ. Resistive switching memory characteristics of single MoSe2 nanorods. Chem Phys Lett. 2015;638:103–107.
  • Yuwen L, Zhou J, Zhang Y, et al. Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells. Nanoscale. 2015;8:2.
  • Yu H, Zhao H, Zhang Y, et al. A biomimetic nanoreactor for combinational chemo/chemodynamic therapy of choriocarcinoma through synergistic apoptosis and ferroptosis strategy. Chem Eng J. 2023;472:144690. doi:10.1016/j.cej.2023.144690
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. P Natl Acad Sci USA. 2005; 102 (43): 15545–15550. doi:10.1073/pnas.0506580102.
  • Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–452. doi:10.1093/nar/gku1003
  • Kong F, Ye S, Zhong Z, et al. Single-Cell transcriptome analysis of chronic antibody-mediated rejection after renal transplantation. Front Immunol. 2022;3:12.