336
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Targeted Delivery of Geraniol via Hyaluronic Acid-Conjugation Enhances Its Anti-Tumor Activity Against Prostate Cancer

, , , , , ORCID Icon & show all
Pages 155-169 | Received 15 Oct 2023, Accepted 22 Dec 2023, Published online: 05 Jan 2024

References

  • Chhikara BS, Parang K. Global Cancer Statistics 2022: the trends projection analysis. Chem Biol Lett. 2023;10(1):451.
  • Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135(5):584–590. doi:10.1097/CM9.0000000000002108
  • Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomed. 2018;13:3921–3935. doi:10.2147/IJN.S165210
  • Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–146. doi:10.1016/j.jconrel.2010.08.027
  • Wang CY, Yamada H, Morton KC, Zukowski K, Lee MS, King CM. Induction of repair synthesis of DNA in mammary and urinary bladder epithelial cells by N-hydroxy derivatives of carcinogenic arylamines. Cancer Res. 1988;48(15):4227–4232.
  • Niu B, Liao K, Zhou Y, et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021;277:121110. doi:10.1016/j.biomaterials.2021.121110
  • Zou L, Liu X, Li J, et al. Redox-sensitive carrier-free nanoparticles self-assembled by disulfide-linked paclitaxel-tetramethylpyrazine conjugate for combination cancer chemotherapy. Theranostics. 2021;11(9):4171–4186. doi:10.7150/thno.42260
  • Li J, Burgess DJ. Nanomedicine-based drug delivery towards tumor biological and immunological microenvironment. Acta Pharm Sin B. 2020;10(11):2110–2124. doi:10.1016/j.apsb.2020.05.008
  • Yang S, Gao H. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res. 2017;126:97–108. doi:10.1016/j.phrs.2017.05.004
  • Zhao Y, Zhang T, Duan S, Davies NM, Forrest ML. CD44-tropic polymeric nanocarrier for breast cancer targeted rapamycin chemotherapy. Nanomedicine. 2014;10(6):1221–1230. doi:10.1016/j.nano.2014.02.015
  • Mohammed M, Devnarain N, Elhassan E, Govender T. Exploring the applications of hyaluronic acid-based nanoparticles for diagnosis and treatment of bacterial infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(4):e1799. doi:10.1002/wnan.1799
  • Hassn Mesrati M, Syafruddin SE, Mohtar MA, Syahir A. CD44: a Multifunctional Mediator of Cancer Progression. Biomolecules. 2021;11(12):1850. doi:10.3390/biom11121850
  • Morath I, Hartmann TN, Orian-Rousseau V. CD44: more than a mere stem cell marker. Int J Biochem Cell Biol. 2016;81(Pt A):166–173. doi:10.1016/j.biocel.2016.09.009
  • Li W, Qian L, Lin J, et al. CD44 regulates prostate cancer proliferation, invasion and migration via PDK1 and PFKFB4. Oncotarget. 2017;8(39):65143–65151. doi:10.18632/oncotarget.17821
  • Korski K, Malicka-Durczak A, Breborowicz J. Expression of stem cell marker CD44 in prostate cancer biopsies predicts cancer grade in radical prostatectomy specimens. Pol J Pathol. 2014;65(4):291–295. doi:10.5114/pjp.2014.48190
  • Ali Abdalla YO, Subramaniam B, Nyamathulla S, et al. Natural Products for Cancer Therapy: a Review of Their Mechanism of Actions and Toxicity in the Past Decade. J Trop Med. 2022;2022:5794350. doi:10.1155/2022/5794350
  • Fatima K, Wani ZA, Meena A, Luqman S. Geraniol exerts its antiproliferative action by modulating molecular targets in lung and skin carcinoma cells. Phytother Res. 2021;35(7):3861–3874. doi:10.1002/ptr.7094
  • Maczka W, Winska K, Grabarczyk M. One Hundred Faces of Geraniol. Molecules. 2020;25(14):3303. doi:10.3390/molecules25143303
  • Choi HS, Song HS, Ukeda H, Sawamura M. Radical-scavenging activities of citrus essential oils and their components: detection using 1,1-diphenyl-2-picrylhydrazyl. J Agric Food Chem. 2000;48(9):4156–4161. doi:10.1021/jf000227d
  • El-Ganainy SO, Shehata AM, El-Mallah A, Abdallah D, Mohy El-Din MM. Geraniol suppresses tumour growth and enhances chemosensitivity of 5-fluorouracil on breast carcinoma in mice: involvement of miR-21/PTEN signalling. J Pharm Pharmacol. 2023;75(8):1130–1139. doi:10.1093/jpp/rgad060
  • Galle M, Crespo R, Kladniew BR, Villegas SM, Polo M, de Bravo MG. Suppression by geraniol of the growth of A549 human lung adenocarcinoma cells and inhibition of the mevalonate pathway in culture and in vivo: potential use in cancer chemotherapy. Nutr Cancer. 2014;66(5):888–895. doi:10.1080/01635581.2014.916320
  • Carnesecchi S, Bras-Goncalves R, Bradaia A, et al. Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts. Cancer Lett. 2004;215(1):53–59. doi:10.1016/j.canlet.2004.06.019
  • Jin X, Sun J, Miao X, Liu G, Zhong D. Inhibitory effect of geraniol in combination with gemcitabine on proliferation of BXPC-3 human pancreatic cancer cells. J Int Med Res. 2013;41(4):993–1001. doi:10.1177/0300060513480919
  • Chaudhary SC, Siddiqui MS, Athar M, Alam MS. Geraniol inhibits murine skin tumorigenesis by modulating COX-2 expression, Ras-ERK1/2 signaling pathway and apoptosis. J Appl Toxicol. 2013;33(8):828–837. doi:10.1002/jat.2739
  • Crespo R, Montero Villegas S, Abba MC, de Bravo MG, Polo MP. Transcriptional and posttranscriptional inhibition of HMGCR and PC biosynthesis by geraniol in 2 Hep-G2 cell proliferation linked pathways. Biochem Cell Biol. 2013;91(3):131–139. doi:10.1139/bcb-2012-0076
  • Ahmad ST, Arjumand W, Seth A, et al. Preclinical renal cancer chemopreventive efficacy of geraniol by modulation of multiple molecular pathways. Toxicology. 2011;290(1):69–81. doi:10.1016/j.tox.2011.08.020
  • Kim SH, Park EJ, Lee CR, et al. Geraniol induces cooperative interaction of apoptosis and autophagy to elicit cell death in PC-3 prostate cancer cells. Int J Oncol. 2012;40(5):1683–1690. doi:10.3892/ijo.2011.1318
  • Kim SH, Bae HC, Park EJ, et al. Geraniol inhibits prostate cancer growth by targeting cell cycle and apoptosis pathways. Biochem Biophys Res Commun. 2011;407(1):129–134. doi:10.1016/j.bbrc.2011.02.124
  • Duan S, Xia Y, Tian X, et al. A multi-bioresponsive self-assembled nano drug delivery system based on hyaluronic acid and geraniol against liver cancer. Carbohydr Polym. 2023;310:120695. doi:10.1016/j.carbpol.2023.120695
  • Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–362. doi:10.1038/nmeth.1322
  • Mitra AK, Agrahari V, Mandal A, et al. Novel delivery approaches for cancer therapeutics. J Control Release. 2015;219:248–268. doi:10.1016/j.jconrel.2015.09.067
  • Kesharwani P, Chadar R, Sheikh A, Rizg WY, Safhi AY. CD44-Targeted Nanocarrier for Cancer Therapy. Front Pharmacol. 2021;12:800481. doi:10.3389/fphar.2021.800481
  • Shende P, Deshpande G. Disulfide Bond-Responsive Nanotherapeutic Systems for the Effective Payload in Cancer Therapy. Curr Pharm Des. 2020;26(41):5353–5361. doi:10.2174/1381612826666200707131006
  • Senbanjo LT, AlJohani H, Majumdar S, Chellaiah MA. Characterization of CD44 intracellular domain interaction with RUNX2 in PC3 human prostate cancer cells. Cell Commun Signal. 2019;17(1):80. doi:10.1186/s12964-019-0395-6
  • Feng J, Xu Z, Liu F, et al. Versatile Catalytic Deoxyribozyme Vehicles for Multimodal Imaging-Guided Efficient Gene Regulation and Photothermal Therapy. ACS Nano. 2018;12(12):12888–12901. doi:10.1021/acsnano.8b08101
  • Ganesh S, Iyer AK, Morrissey DV, Amiji MM. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials. 2013;34(13):3489–3502. doi:10.1016/j.biomaterials.2013.01.077
  • Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol. 2004;36(12):2405–2419. doi:10.1016/j.biocel.2004.04.011
  • Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 2009;16(7):966–975. doi:10.1038/cdd.2009.33
  • Gottlieb E, Armour SM, Harris MH, Thompson CB. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 2003;10(6):709–717. doi:10.1038/sj.cdd.4401231
  • Vasan K, Clutter M, Fernandez Dunne S, et al. Genes Involved in Maintaining Mitochondrial Membrane Potential Upon Electron Transport Chain Disruption. Front Cell Dev Biol. 2022;10:781558. doi:10.3389/fcell.2022.781558
  • Lee S, Park YR, Kim SH, et al. Geraniol suppresses prostate cancer growth through down-regulation of E2F8. Cancer Med. 2016;5(10):2899–2908. doi:10.1002/cam4.864
  • Okumoto K, El Shermely M, Natsui M, et al. The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation. Elife. 2020;9:e55896. doi:10.7554/eLife.55896
  • Cipolla CM, Lodhi IJ. Peroxisomal Dysfunction in Age-Related Diseases. Trends Endocrinol Metab. 2017;28(4):297–308. doi:10.1016/j.tem.2016.12.003
  • Stroud DA, Surgenor EE, Formosa LE, et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016;538(7623):123–126. doi:10.1038/nature19754
  • Emelyanova L, Preston C, Gupta A, et al. Effect of Aging on Mitochondrial Energetics in the Human Atria. J Gerontol a Biol Sci Med Sci. 2018;73(5):608–616. doi:10.1093/gerona/glx160
  • Reinson K, Kovacs-Nagy R, Oiglane-Shlik E, et al. Diverse phenotype in patients with complex I deficiency due to mutations in NDUFB11. Eur J Med Genet. 2019;62(11):103572. doi:10.1016/j.ejmg.2018.11.006
  • Walker BR, Moraes CT. Nuclear-Mitochondrial Interactions. Biomolecules. 2022;12(3):427. doi:10.3390/biom12030427
  • Srivastava A, Srivastava P, Mathur S, et al. Lipid Metabolism and Mitochondria: cross Talk in Cancer. Curr Drug Targets. 2022;23(6):606–627. doi:10.2174/1389450122666210824144907
  • Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8(21):2003–2014. doi:10.3969/j.issn.1673-5374.2013.21.009
  • Wang C, Youle RJ. The role of mitochondria in apoptosis*. Annu Rev Genet. 2009;43:95–118. doi:10.1146/annurev-genet-102108-134850
  • Walker MA, Tian R. NAD(H) in mitochondrial energy transduction: implications for health and disease. Curr Opin Physiol. 2018;3:101–109. doi:10.1016/j.cophys.2018.03.011
  • Fontanesi F, Soto IC, Barrientos A. Cytochrome c oxidase biogenesis: new levels of regulation. IUBMB Life. 2008;60(9):557–568. doi:10.1002/iub.86
  • Welchen E, Gonzalez DH. Cytochrome c, a hub linking energy, redox, stress and signaling pathways in mitochondria and other cell compartments. Physiol Plant. 2016;157(3):310–321. doi:10.1111/ppl.12449
  • Kuhlbrandt W. Structure and Mechanisms of F-Type ATP Synthases. Annu Rev Biochem. 2019;88(1):515–549. doi:10.1146/annurev-biochem-013118-110903
  • Atlante A, Calissano P, Bobba A, Azzariti A, Marra E, Passarella S. Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J Biol Chem. 2000;275(47):37159–37166. doi:10.1074/jbc.M002361200
  • Vempati UD, Diaz F, Barrientos A, et al. Role of cytochrome C in apoptosis: increased sensitivity to tumor necrosis factor alpha is associated with respiratory defects but not with lack of cytochrome C release. Mol Cell Biol. 2007;27(5):1771–1783. doi:10.1128/MCB.00287-06
  • Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863(12):2977–2992. doi:10.1016/j.bbamcr.2016.09.012
  • Jiang X, Wang X. Cytochrome C-mediated apoptosis. Annu Rev Biochem. 2004;73:87–106. doi:10.1146/annurev.biochem.73.011303.073706
  • Palma FR, He C, Danes JM, et al. Mitochondrial Superoxide Dismutase: what the Established, the Intriguing, and the Novel Reveal About a Key Cellular Redox Switch. Antioxid Redox Signal. 2020;32(10):701–714. doi:10.1089/ars.2019.7962
  • Bonnefoy N, Kermorgant M, Groudinsky O, Minet M, Slonimski PP, Dujardin G. Cloning of a human gene involved in cytochrome oxidase assembly by functional complementation of an oxa1- mutation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1994;91(25):11978–11982. doi:10.1073/pnas.91.25.11978