268
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Emerging Strategies to Overcome Current CAR-T Therapy Dilemmas - Exosomes Derived from CAR-T Cells

, , , , & ORCID Icon
Pages 2773-2791 | Received 17 Oct 2023, Accepted 27 Feb 2024, Published online: 18 Mar 2024

References

  • Kong YJ, Tang L, You Y, et al. Analysis of causes for poor persistence of CAR-T cell therapy in vivo. Front Immunol. 2023;14:1.
  • Naeem M, Hazafa A, Bano N, et al. Explorations of CRISPR/Cas9 for improving the long-term efficacy of universal CAR-T cells in tumor immunotherapy. Life Sci. 2023;2023:316.
  • Baker DJ, Arany Z, Baur JA, et al. CAR T therapy beyond cancer: the evolution of a living drug. Nature. 2023;619(7971):707–715. doi:10.1038/s41586-023-06243-w
  • Ma L, Dichwalkar T, Chang JYH, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science. 2019;365(6449):162–+. doi:10.1126/science.aav8692
  • Byun JM. Practical issues in CAR T-cell therapy. Blood Res. 2023;58(S1):S11–S2. doi:10.5045/br.2023.2023015
  • Flugel CL, Majzner RG, Krenciute G, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol. 2023;20(1):49–62. doi:10.1038/s41571-022-00704-3
  • Chohan KL, Siegler EL, Kenderian SS. CAR-T Cell Therapy: the Efficacy and Toxicity Balance. Curr Hematol Malignancy Rep. 2023;18(2):9–18. doi:10.1007/s11899-023-00687-7
  • Reinhard K, Rengstl B, Oehm P, et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science. 2020;367(6476):446–+. doi:10.1126/science.aay5967
  • Yang PX, Cao XJ, Cai HL, et al. The exosomes derived from CAR-T cell efficiently target mesothelin and reduce triple-negative breast cancer growth. Cell Immunol. 2021;2021:360.
  • Fu W, Lei C, Liu S, et al. CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat Commun. 2019:10. doi:10.1038/s41467-018-07709-6
  • Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):640–+. doi:10.1126/science.aau6977
  • Chavez JC, Bachmeier C, Kharfan-Dabaja MA. CAR T-cell therapy for B-cell lymphomas: clinical trial results of available products. Ther Adv Hematol. 2019;2019:10.
  • Orlando EJ, Han X, Tribouley C, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nature Med. 2018;10:24.
  • Walsh Z, Ross S, Fry TJ. Multi-Specific CAR Targeting to Prevent Antigen Escape. Curr Hematol Malignancy Rep. 2019;14(5):451–459. doi:10.1007/s11899-019-00537-5
  • Sotillo E, Barrett DM, Black KL, et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discovery. 2015;5(12):1282–1295. doi:10.1158/2159-8290.CD-15-1020
  • Fischer J, Paret C, El Malki K, et al. CD19 Isoforms Enabling Resistance to CART-19 Immunotherapy Are Expressed in B-ALL Patients at Initial Diagnosis. J Immunother. 2017;40(5):187–195. doi:10.1097/CJI.0000000000000169
  • Yang X, Wei J, Zhou J. Overcoming resistance to anti-CD19 CAR T-cell therapy in B-cell malignancies. Hematol Oncol. 2022;40(5):821–834. doi:10.1002/hon.3036
  • Reinle K, Mogk A, Bukau B. The Diverse Functions of Small Heat Shock Proteins in the Proteostasis Network. J Mol Biol. 2022;434(1):167157. doi:10.1016/j.jmb.2021.167157
  • Kim YE, Hipp MS, Bracher A, et al. Molecular Chaperone Functions in Protein Folding and Proteostasis [M]//KORNBERG R D. Annu Rev Biochem. 2013;82(1):323–355. doi:10.1146/annurev-biochem-060208-092442
  • Braig F, Brandt A, Goebeler M, et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood. 2017;129(1):100–104. doi:10.1182/blood-2016-05-718395
  • Huo C-D, Yang J, Gu Y-M, et al. Overcome tumor relapse in CAR T cell therapy. Clin Transl Oncol. 2022;24(10):1833–1843. doi:10.1007/s12094-022-02847-2
  • Evans AG, Rothberg PG, Burack WR, et al. Evolution to plasmablastic lymphoma evades CD19-directed chimeric antigen receptor T cells. Br J Haematol. 2015;171(2):205–209. doi:10.1111/bjh.13562
  • Gardner R, Wu D, Cherian S, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127(20):2406–2410. doi:10.1182/blood-2015-08-665547
  • Gattinoni L, Finkelstein SE, Klebanoff CA, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8 + T cells. J Exp Med. 2005;202(7):907–912. doi:10.1084/jem.20050732
  • Jacoby E, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;2016:7.
  • Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer. 2021;21(3):145–161. doi:10.1038/s41568-020-00323-z
  • Hamieh M, Dobrin A, Cabriolu A, et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature. 2019;568(7750):112–+. doi:10.1038/s41586-019-1054-1
  • Miyake K, Karasuyama H. The Role of Trogocytosis in the Modulation of Immune Cell Functions. Cells. 2021;10(5):1255. doi:10.3390/cells10051255
  • Walker AJ, Majzner RG, Zhang L, et al. Tumor Antigen and Receptor Densities Regulate Efficacy of a Chimeric Antigen Receptor Targeting Anaplastic Lymphoma Kinase. Mol Ther. 2017;25(9):2189–2201. doi:10.1016/j.ymthe.2017.06.008
  • Watanabe K, Terakura S, Martens AC, et al. Target Antigen Density Governs the Efficacy of Anti-CD20-CD28-CD3 zeta Chimeric Antigen Receptor-Modified Effector CD8(+) T Cells. J Iimmunol. 2015;194(3):911–920. doi:10.4049/jimmunol.1402346
  • Ruella M, Barrett DM, Shestova O, et al. A cellular antidote to specifically deplete anti-CD19 chimeric antigen receptor–positive cells. Blood. 2020;135(7):505–509. doi:10.1182/blood.2019001859
  • Ruella M, Xu J, Barrett DM, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nature Med. 2018;24(10):1499–+. doi:10.1038/s41591-018-0201-9
  • Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nature Med. 2018;24(1):20–+. doi:10.1038/nm.4441
  • Gumber D, Wang LD. Improving CAR-T immunotherapy: overcoming the challenges of T cell exhaustion. Ebiomedicine. 2022;2022:77.
  • Weber EW, Parker KR, Sotillo E, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 2021;372(6537):49–+. doi:10.1126/science.aba1786
  • Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4). doi:10.1038/s41408-021-00459-7
  • Allen GM, Frankel NW, Reddy NR, et al. Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science. 2022;378(6625):1186–+. doi:10.1126/science.aba1624
  • Zebley CC, Brown C, Mi T, et al. CD19-CAR T cells undergo exhaustion DNA methylation programming in patients with acute lymphoblastic leukemia. Cell Rep. 2021;37(9):110079. doi:10.1016/j.celrep.2021.110079
  • Kong WM, Dimitri A, Wang WL, et al. BET bromodomain protein inhibition reverses chimeric antigen receptor extinction and reinvigorates exhausted T cells in chronic lymphocytic leukemia. J Clin Investig. 2021;131(16). doi:10.1172/JCI145459
  • Yin XC, He LF, Guo ZG. T-cell exhaustion in CAR-T -cell therapy and strategies to overcome it. Immunology. 2023;169(4):400–411. doi:10.1111/imm.13642
  • Kim K, Park S, Park SY, et al. Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer. Genome Med. 2020;12(1). doi:10.1186/s13073-020-00722-9
  • Khan O, Giles JR, McDonald S, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;571(7764):211–+. doi:10.1038/s41586-019-1325-x
  • Zhang HH, Lv XF, Kong QF, et al. IL-6/IFN-γ double knockdown CAR-T cells reduce the release of multiple cytokines from PBMCs in vitro. Hum Vaccines Immunother. 2022;18(1):1–14. doi:10.1080/21645515.2021.2016005
  • Moriyama S, Fukata M, Yokoyama T, et al. Case Report: cardiac Tamponade in Association With Cytokine Release Syndrome Following CAR-T Cell Therapy. Front Cardiovasc Med. 2022;2022:9.
  • Riddell SR. Adrenaline fuels a cytokine storm during immunotherapy. Nature. 2018;564(7735):194–196. doi:10.1038/d41586-018-07581-w
  • Rubin DB, Al Jarrah A, Li K, et al. Clinical Predictors of Neurotoxicity After Chimeric Antigen Receptor T-Cell Therapy. JAMA neurol. 2020;77(12):1536–1542. doi:10.1001/jamaneurol.2020.2703
  • Lee K, Paek H, Ai L, et al. Treatment Profile of CAR-T Cell Therapy Induced Cytokine Release Syndrome and Neurotoxicity: insights from Real-World Evidence. Blood. 2022;140(Supplement 1):12750–12752. doi:10.1182/blood-2022-166716
  • Cronk RJ, Zurko J, Shah NN. Bispecific Chimeric Antigen Receptor T Cell Therapy for B Cell Malignancies and Multiple Myeloma. Cancers. 2020;12(9):2523. doi:10.3390/cancers12092523
  • Gardner RA, Annesley C, Wilson A, et al. Efficacy of SCRI-CAR19x22 T cell product in B-ALL and persistence of anti-CD22 activity. J clin oncol. 2020;38(15_suppl):3035. doi:10.1200/JCO.2020.38.15_suppl.3035
  • Schneider D, Xiong Y, Wu DR, et al. Leukemia Cell Surface Antigen Modulation Induced By Dual CD19/CD20 Chimeric Antigen Receptor (CAR)-T Cells. Biol Blood Marrow Transplant. 2017;23(3):S209–S10. doi:10.1016/j.bbmt.2016.12.418
  • Pan J, Zuo S, Deng B, et al. Sequential CD19-22 CAR T therapy induces sustained remission in children with r/r B-ALL. Blood. 2020;135(5):387–391. doi:10.1182/blood.2019003293
  • Feng YR, Liu X, Li X, et al. Novel BCMA-OR-CD38 tandem-dual chimeric antigen receptor T cells robustly control multiple myeloma. Oncoimmunology. 2021;10(1). doi:10.1080/2162402X.2021.1959102
  • Xie B, Li Z, Zhou J, et al. Current Status and Perspectives of Dual-Targeting Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Hematological Malignancies. Cancers. 2022;14(13):3230. doi:10.3390/cancers14133230
  • Ruella M, Barrett DM, Kenderian SS, et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Investig. 2016;126(10):3814–3826. doi:10.1172/JCI87366
  • Amrolia PJ, Wynn R, Hough R, et al. Simultaneous Targeting of CD19 and CD22: phase I Study of AUTO3, a Bicistronic Chimeric Antigen Receptor (CAR) T-Cell Therapy, in Pediatric Patients with Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia (r/r B-ALL): Amelia Study. Blood. 2018;2018:132.
  • Bielamowicz K, Fousek K, Byrd TT, et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro-Oncology. 2018;20(4):506–518. doi:10.1093/neuonc/nox182
  • Zah E, Lin M-Y, Silva-Benedict A, et al. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol Res. 2016;4(6):498–508. doi:10.1158/2326-6066.CIR-15-0231
  • Muyldermans S. Nanobodies: natural Single-Domain Antibodies [M]//KORNBERG R D. Annu Rev Biochem. 2013;82(1):775–797. doi:10.1146/annurev-biochem-063011-092449
  • Zhao WH, Liu J, Wang BY, et al. A Phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol. 2018;2018:11.
  • Berdeja JG, Madduri D, Usmani SZ, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 2021;398(10297):314–324. doi:10.1016/S0140-6736(21)00933-8
  • Kozani PS, Naseri A. Nanobody-based CAR-T cells for cancer immunotherapy. Biomarker Res. 2022;10(1):1.
  • Majzner RG, Rietberg SP, Sotillo E, et al. Tuning the Antigen Density Requirement for CAR T-cell Activity. Cancer Discovery. 2020;10(5):702–723. doi:10.1158/2159-8290.CD-19-0945
  • Fujiwara K, Tsunei A, Kusabuka H, et al. Hinge and Transmembrane Domains of Chimeric Antigen Receptor Regulate Receptor Expression and Signaling Threshold. Cells. 2020;9(5):1182. doi:10.3390/cells9051182
  • Park S, Shevlin E, Vedvyas Y, et al. Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity. Sci Rep. 2017:7. doi:10.1038/s41598-017-00035-9
  • Richman SA, Nunez-Cruz S, Moghimi B, et al. High-Affinity GD2-Specific CAR T Cells Induce Fatal Encephalitis in a Preclinical Neuroblastoma Model. Cancer Immunol Res. 2018;6(1):36–46. doi:10.1158/2326-6066.CIR-17-0211
  • Hombach AA, Gorgens A, Chmielewski M, et al. Superior Therapeutic Index in Lymphoma Therapy: CD30(+) CD34(+) Hematopoietic Stem Cells Resist a Chimeric Antigen Receptor T-cell Attack. Mol Ther. 2016;24(8):1423–1434. doi:10.1038/mt.2016.82
  • Lynn RC, Poussin M, Kalota A, et al. Targeting of folate receptor beta on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells. Blood. 2015;125(22):3466–3476. doi:10.1182/blood-2014-11-612721
  • Sun ZZ, Li RT, Shen Y, et al. In situ antigen modification-based target-redirected universal chimeric antigen receptor T (TRUE CAR-T) cell therapy in solid tumors. J Hematol Oncol. 2022;15(1). doi:10.1186/s13045-022-01246-y
  • Csiszar A, Hersch N, Dieluweit S, et al. Novel Fusogenic Liposomes for Fluorescent Cell Labeling and Membrane Modification. Bioconjugate Chem. 2010;21(3):537–543. doi:10.1021/bc900470y
  • Kim B, Pang HB, Kang J, et al. Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus. Nat Commun. 2018:9. doi:10.1038/s41467-017-01881-x
  • Lee J, Kim J, Jeong M, et al. Liposome-Based Engineering of Cells To Package Hydrophobic Compounds in Membrane Vesicles for Tumor Penetration. Nano Lett. 2015;15(5):2938–2944. doi:10.1021/nl5047494
  • Svoronos AA, Engelman DM. Pharmacokinetic modeling reveals parameters that govern tumor targeting and delivery by a pH-Low Insertion Peptide (pHLIP). Proc Natl Acad Sci USA. 2021;118(1). doi:10.1073/pnas.2016605118
  • Slaybaugh G, Weerakkody D, Engelman DM, et al. Kinetics of pHLIP peptide insertion into and exit from a membrane. Proc Natl Acad Sci USA. 2020;117(22):12095–12100. doi:10.1073/pnas.1917857117
  • Liberti MV, Locasale JW. The Warburg Effect: how Does it Benefit Cancer Cells? Trends Biochem Sci. 2016;41(3):211–218. doi:10.1016/j.tibs.2015.12.001
  • Zhang HR, Lu J, Liu J, et al. Advances in the discovery of exosome inhibitors in cancer. J Enzyme Inhib Med Chem. 2020;35(1):1322–1330. doi:10.1080/14756366.2020.1754814
  • Kar R, Dhar R, Mukherjee S, et al. Exosome-Based Smart Drug Delivery Tool for Cancer Theranostics. ACS Biomater Sci Eng. 2023;9(2):577–594. doi:10.1021/acsbiomaterials.2c01329
  • Ferreira D, Moreira JN, Rodrigues LR. New advances in exosome-based targeted drug delivery systems. Crit Rev Oncol Hematol. 2022;2022:172.
  • Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, et al. Sorting it out: regulation of exosome loading. Semi Cancer Biol. 2014;28:3–13. doi:10.1016/j.semcancer.2014.04.009
  • Cariello M, Squilla A, Piacente M, et al. Drug Resistance: the Role of Exosomal miRNA in the Microenvironment of Hematopoietic Tumors. Molecules. 2023;28(1):1.
  • Lau NCH, Yam JWP. From Exosome Biogenesis to Absorption: key Takeaways for Cancer Research. Cancers. 2023;15(7):1992. doi:10.3390/cancers15071992
  • Hamzah RN, Alghazali KM, Biris AS, et al. Exosome Traceability and Cell Source Dependence on Composition and Cell-Cell Cross Talk. Int J Mol Sci. 2021;22(10):5346. doi:10.3390/ijms22105346
  • Bebelman MP, Smit MJ, Pegtel DM, et al. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;188:1–11. doi:10.1016/j.pharmthera.2018.02.013
  • Kim HY, Min H-K, Song H-W, et al. Delivery of human natural killer cell-derived exosomes for liver cancer therapy: an in vivo study in subcutaneous and orthotopic animal models. Drug Delivery. 2022;29(1):2897–2911. doi:10.1080/10717544.2022.2118898
  • Li X, Corbett AL, Taatizadeh E, et al. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3(1). doi:10.1063/1.5087122
  • Yu D, Li Y, Wang M, et al. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer. 2022;21(1). doi:10.1186/s12943-022-01509-9
  • Huang JH, Xiong JY, Yang L, et al. Cell-free exosome-laden scaffolds for tissue repair. Nanoscale. 2021;13(19):8740–8750. doi:10.1039/D1NR01314A
  • Kang Y, Xu C, Meng L, et al. Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioact Mate. 2022;18:26–41. doi:10.1016/j.bioactmat.2022.02.012
  • Ha DH, Kim H-K, Lee J, et al. Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration. Cells. 2020;9(5):1157. doi:10.3390/cells9051157
  • Xie F, Zhou X, Fang MY, et al. Extracellular Vesicles in Cancer Immune Microenvironment and Cancer Immunotherapy. Adv Sci. 2019;6(24). doi:10.1002/advs.201901779
  • Ding Y-N, Ding H-Y, Li H, et al. Photosensitive small extracellular vesicles regulate the immune microenvironment of triple negative breast cancer. Acta Biomater. 2023;167:534–550. doi:10.1016/j.actbio.2023.06.004
  • Xie LS, Li J, Wang GH, et al. Phototheranostic Metal-Phenolic Networks with Antiexosomal PD-L1 Enhanced Ferroptosis for Synergistic Immunotherapy. J Am Chem Soc. 2022;144(2):787–797. doi:10.1021/jacs.1c09753
  • Zhou QJ, Wei SY, Wang H, et al. T cell-derived exosomes in tumor immune modulation and immunotherapy. Front Immunol. 2023;2023:14.
  • Choi H, Choi K, Kim D-H, et al. Strategies for Targeted Delivery of Exosomes to the Brain: advantages and Challenges. Pharmaceutics. 2022;14(3):672. doi:10.3390/pharmaceutics14030672
  • Li SD, Hou X, Qi HZ, et al. Exosomes Provide Naturally Occurring Endogenous Nanocarriers for Effective Drug Delivery Strategies. Progress in Chemistry. 2016;28(2–3):353–362.
  • Zhang M, Shao W, Yang T, et al. Conscription of Immune Cells by Light-Activatable Silencing NK-Derived Exosome (LASNEO) for Synergetic Tumor Eradication. Adv Sci. 2022;9(22):1.
  • Beit-Yannai E, Tabak S, Stamer WD. Physical exosome: exosome interactions. J Cell Mol Med. 2018;22(3):2001–2006. doi:10.1111/jcmm.13479
  • Zheng JY, Hu XX, Zeng YY, et al. Review of the advances in lipid anchors-based biosensors for the isolation and detection of exosomes. Anal Chim Acta. 2023;2023:1263.
  • Lu JM, Wei NA, Zhu SL, et al. Exosomes Derived From Dendritic Cells Infected With Toxoplasma gondii Show Antitumoral Activity in a Mouse Model of Colorectal Cancer. Front Oncol. 2022;2022:12.
  • Di Pace AL, Tumino N, Besi F, et al. Characterization of Human NK Cell-Derived Exosomes: role of DNAM1 Receptor in Exosome-Mediated Cytotoxicity against Tumor. Cancers. 2020;12(3):661. doi:10.3390/cancers12030661
  • Haque S, Vaiselbuh SR. CD19 Chimeric Antigen Receptor-Exosome Targets CD19 Positive B-lineage Acute Lymphocytic Leukemia and Induces Cytotoxicity. Cancers. 2021;13(6):1401. doi:10.3390/cancers13061401
  • Chen Z, Yuan R, Hu SY, et al. Roles of the Exosomes Derived From Myeloid-Derived Suppressor Cells in Tumor Immunity and Cancer Progression. Front Immunol. 2022;2022:13.
  • Blanchard N, Lankar D, Faure F, et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Iimmunol. 2002;168(7):3235–3241. doi:10.4049/jimmunol.168.7.3235
  • Calvo V, Izquierdo M. T Lymphocyte and CAR-T Cell-Derived Extracellular Vesicles and Their Applications in Cancer Therapy. Cells. 2022;11(5):790. doi:10.3390/cells11050790
  • Tao BL, Du RX, Zhang XM, et al. Engineering CAR-NK cell derived exosome disguised nano-bombs for enhanced HER2 positive breast cancer brain metastasis therapy. J Control Release. 2023;363:692–706. doi:10.1016/j.jconrel.2023.10.007
  • Pullan JE, Confeld MI, Osborn JK, et al. Exosomes as Drug Carriers for Cancer Therapy. Mol Pharmaceut. 2019;16(5):1789–1798. doi:10.1021/acs.molpharmaceut.9b00104
  • Shao JT, Zaro J, Shen YX. Advances in Exosome-Based Drug Delivery and Tumor Targeting: from Tissue Distribution to Intracellular Fate. Int j Nanomed. 2020;15:9355–9371. doi:10.2147/IJN.S281890
  • Jenkins S, Wesolowski R, Gatti-Mays ME. Improving Breast Cancer Responses to Immunotherapy-a Search for the Achilles Heel of the Tumor Microenvironment. Curr Oncol Rep. 2021;23(5). doi:10.1007/s11912-021-01040-y
  • Johnson A, Townsend M, O’neill K. Tumor Microenvironment Immunosuppression: a Roadblock to CAR T-Cell Advancement in Solid Tumors. Cells. 2022;11(22):1.
  • Ye ZL, Zeng DQ, Zhou R, et al. Tumor Microenvironment Evaluation for Gastrointestinal Cancer in the Era of Immunotherapy and Machine Learning. Front Immunol. 2022;2022:13.
  • Xu Q, Zhang Z, Zhao L, et al. Tropism-facilitated delivery of CRISPR/Cas9 system with chimeric antigen receptor-extracellular vesicles against B-cell malignancies. J Control Release. 2020;326:455–467. doi:10.1016/j.jconrel.2020.07.033
  • Wei HX, Chen J, Wang S, et al. A Nanodrug Consisting Of Doxorubicin And Exosome Derived From Mesenchymal Stem Cells For Osteosarcoma Treatment In Vitro. Int j Nanomed. 2019;14:8603–8610. doi:10.2147/IJN.S218988
  • Kyuno D, Zhao K, Bauer N, et al. Therapeutic Targeting Cancer-Initiating Cell Markers by Exosome miRNA: efficacy and Functional Consequences Exemplified for claudin7 and EpCAM. Transl Oncol. 2019;12(2):191–199. doi:10.1016/j.tranon.2018.08.021
  • Liu QH, Dai GR, Wu Y, et al. iRGD-modified exosomes-delivered BCL6 siRNA inhibit the progression of diffuse large B-cell lymphoma. Front Oncol. 2022;2022:12.
  • Alanis EF, Pinotti M, Dal Mas A, et al. An exon-specific U1 small nuclear RNA (snRNA) strategy to correct splicing defects. Hum Mol Genet. 2012;21(11):2389–2398. doi:10.1093/hmg/dds045
  • Dan JM, Memczak S, Belmonte JCI. Expanding the Toolbox and Targets for Gene Editing. Trends Mol Med. 2021;27(3):203–206. doi:10.1016/j.molmed.2020.12.005
  • Stepanichev MY. Using Genome Editing for Alzheimer’s Disease Therapy: from Experiment to Clinic. Neurochem J. 2021;15(4):367–375. doi:10.1134/S1819712421040139
  • Mcandrews KM, Xiao F, Chronopoulos A, et al. Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic Kras G12D in pancreatic cancer. Life Sci Alliance. 2021;4(9):e202000875. doi:10.26508/lsa.202000875
  • Duan L, Ouyang K, Xu X, et al. Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing. Front Genetics. 2021;2021:12.
  • Ye YY, Zhang X, Xie F, et al. An engineered exosome for delivering sgRNA:Cas9 ribonucleoprotein complex and genome editing in recipient cells. Biomater Sci. 2020;8(10):2966–2976. doi:10.1039/D0BM00427H
  • Hu JW, Zhu J, Chai J, et al. Application of exosomes as nanocarriers in cancer therapy. J Mat Chem B. 2023;11(44):10595–10612. doi:10.1039/D3TB01991H
  • Sadeghi S, Tehrani FR, Tahmasebi S, et al. Exosome engineering in cell therapy and drug delivery. Inflammopharmacology. 2023;31(1):145–169. doi:10.1007/s10787-022-01115-7
  • Dinofia AM, Grupp SA. Will allogeneic CAR T cells for CD19(+) malignancies take autologous CAR T cells ‘off the shelf’? Nat Rev Clin Oncol. 2021;18(4):195–196. doi:10.1038/s41571-021-00485-1
  • Depil S, Duchateau P, Grupp SA, et al. ‘Off-The-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020;19(3):185–199. doi:10.1038/s41573-019-0051-2
  • Balke-Want H, Keerthi V, Cadinanos-Garai A, et al. Non-viral chimeric antigen receptor (CAR) T cells going viral. Immuno Oncology Technol. 2023;18:100375. doi:10.1016/j.iotech.2023.100375
  • Cho JH, Collins JJ, Wong WW. Universal Chimeric Antigen Receptors for Multiplexed and Logical Control of T Cell Responses. Cell. 2018;173(6):1426. doi:10.1016/j.cell.2018.03.038
  • Liu DL, Zhao JJ, Song YP. Engineering switchable and programmable universal CARs for CAR T therapy. J Hematol Oncol. 2019;12(1). doi:10.1186/s13045-019-0763-0
  • Zhao JJ, Lin Q, Song Y, et al. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol. 2018;11(1). doi:10.1186/s13045-018-0677-2
  • Lohmueller JJ, Ham JD, Kvorjak M, et al. mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology. 2018;7(1):e1368604. doi:10.1080/2162402X.2017.1368604
  • Magnani CF, Tettamanti S, Alberti G, et al. Transposon-Based CAR T Cells in Acute Leukemias: where Are We Going? Cells. 2020;9(6):1337. doi:10.3390/cells9061337
  • Yagyu S, Nakazawa Y. piggyBac-transposon-mediated CAR-T cells for the treatment of hematological and solid malignancies. Int J Clin Oncol. 2023;28(6):736–747. doi:10.1007/s10147-023-02319-9
  • Lock D, Monjezi R, Brandes C, et al. Automated, scaled, transposon-based production of CAR T cells. J Immuno Ther Cancer. 2022;10(9):e005189. doi:10.1136/jitc-2022-005189
  • Kimiz-Gebologlu I, Oncel SS. Exosomes: large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J Control Release. 2022;347:533–543. doi:10.1016/j.jconrel.2022.05.027
  • Liu WZ, Ma ZJ, Kang XW. Current status and outlook of advances in exosome isolation. Anal Bioanal Chem. 2022;414(24):7123–7141. doi:10.1007/s00216-022-04253-7
  • Qu Q, Fu B, Long Y, et al. Current Strategies for Promoting the Large-scale Production of Exosomes. Curr Neuropharmacol. 2023;21(9):1964–1979. doi:10.2174/1570159X21666230216095938
  • Jalaludin I, Lubman DM, Kim J. A guide to mass spectrometric analysis of extracellular vesicle proteins for biomarker discovery. Mass Spectrom Rev. 2023;42(2):844–872. doi:10.1002/mas.21749
  • Li YJ, Wu JY, Liu J, et al. Artificial exosomes for translational nanomedicine. J Nanobiotechnol. 2021;19(1):1.
  • Jang SC, Kim OY, Yoon CM, et al. Bioinspired Exosome-Mimetic Nanovesicles for Targeted Delivery of Chemotherapeutics to Malignant Tumors. Acs Nano. 2013;7(9):7698–7710. doi:10.1021/nn402232g
  • Jo W, Kim J, Yoon J, et al. Large-scale generation of cell-derived nanovesicles. Nanoscale. 2014;6(20):12056–12064. doi:10.1039/C4NR02391A
  • Ingato D, Edson JA, Zakharian M, et al. Cancer Cell-Derived, Drug-Loaded Nanovesicles Induced by Sulfhydryl-Blocking for Effective and Safe Cancer Therapy. Acs Nano. 2018;12(9):9568–9577. doi:10.1021/acsnano.8b05377