461
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Microstructure Formation and Characterization of Long-Acting Injectable Microspheres: The Gateway to Fully Controlled Drug Release Pattern

, , , , , , ORCID Icon, , & ORCID Icon show all
Pages 1571-1595 | Received 02 Nov 2023, Accepted 24 Jan 2024, Published online: 19 Feb 2024

References

  • Andhariya JV, Burgess DJ. Recent advances in testing of microsphere drug delivery systems. Expert Opin Drug Deliv. 2016;13:593–608. doi:10.1517/17425247.2016.1134484
  • D’Souza S, Faraj JA, Giovagnoli S, DeLuca PP. In vitro-in vivo correlation from lactide-co-glycolide polymeric dosage forms. Prog Biomater. 2014;3:131–142. doi:10.1007/s40204-014-0029-4
  • Somayaji MR, Das D, Przekwas A. A new level A Type IVIVC for the rational design of clinical trials toward regulatory approval of generic polymeric long-acting injectables. Clin Pharmacokinet. 2016;55:1179–1190. doi:10.1007/s40262-016-0388-1
  • Zhong H, Chan G, Hu Y, Hu H, Ouyang D. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics. 2018;10:263. doi:10.3390/pharmaceutics10040263
  • O’Brien MN, Jiang W, Wang Y, Loffredo DM. Challenges and opportunities in the development of complex generic long-acting injectable drug products. J Control Release. 2021;336:144–158. doi:10.1016/j.jconrel.2021.06.017
  • Lim YW, Tan WS, Ho KL, et al. Challenges and Complications of Poly(lactic-co-glycolic acid)-based long-acting drug product development. Pharmaceutics. 2022;14:614. doi:10.3390/pharmaceutics14030614
  • Nkanga CI, Fisch A, Rad-Malekshahi M, et al. Clinically established biodegradable long acting injectables: an industry perspective. Adv Drug Deliv Rev. 2020;167:19–46. doi:10.1016/j.addr.2020.11.008
  • Clark AG, Wang R, Qin Y, et al. Assessing microstructural critical quality attributes in PLGA microspheres by FIB-SEM analytics. J Control Release. 2022;349:580–591. doi:10.1016/j.jconrel.2022.06.066
  • Xue Y, Xu L, Wang A, et al. Studying spatial drug distribution in golf ball-shaped microspheres to understand drug release. J Control Release. 2023;357:196–209. doi:10.1016/j.jconrel.2023.03.022
  • Hua Y, Su Y, Zhang H, et al. Poly(lactic-co-glycolic acid) microsphere production based on quality by design: a review. Drug Deliv. 2021;28:1342–1355. doi:10.1080/10717544.2021.1943056
  • Andhariya JV, Jog R, Shen J, et al. In vitro-in vivo correlation of parenteral PLGA microspheres: effect of variable burst release. J Control Release. 2019;314:25–37. doi:10.1016/j.jconrel.2019.10.014
  • Pu C, Wang Q, Zhang H, et al. In vitro-in vivo relationship of amorphous insoluble API (Progesterone) in PLGA microspheres. Pharm Res. 2017;34:2787–2797. doi:10.1007/s11095-017-2258-4
  • Sophocleous AM, Desai KG, Mazzara JM, et al. The nature of peptide interactions with acid end-group PLGAs and facile aqueous-based microencapsulation of therapeutic peptides. J Control Release. 2013;172:662–670. doi:10.1016/j.jconrel.2013.08.295
  • Wan B, Bao Q, Burgess D. Long-acting PLGA microspheres: advances in excipient and product analysis toward improved product understanding. Adv Drug Delivery Rev 2023;198:114857. doi:10.1016/j.addr.2023.114857
  • Muddineti OS, Omri A. Current trends in PLGA based long-acting injectable products: the industry perspective. Expert Opin Drug Deliv. 2022;19:559–576. doi:10.1080/17425247.2022.2075845
  • Cai C, Mao S, Germershaus O, et al. Influence of morphology and drug distribution on the release process of FITC-dextran-loaded microspheres prepared with different types of PLGA. J Microencapsul. 2009;26:334–345. doi:10.1080/02652040802354707
  • Mao S, Shi Y, Li L, Xu J, Schaper A, Kissel T. Effects of process and formulation parameters on characteristics and internal morphology of poly(d, l-lactide-co-glycolide) microspheres formed by the solvent evaporation method. Eur J Pharm Biopharm. 2008;68:214–223. doi:10.1016/j.ejpb.2007.06.008
  • Garner J, Skidmore S, Hadar J, et al. Scanning analysis of sequential semisolvent vapor impact to study naltrexone release from poly(lactide-co-glycolide) microparticles. Mol Pharm. 2022;19:4286–4298. doi:10.1021/acs.molpharmaceut.2c00595
  • Garner J, Skidmore S, Hadar J, et al. Surface analysis of sequential semi-solvent vapor impact (SAVI) for studying microstructural arrangements of poly(lactide-co-glycolide) microparticles. J Control Release. 2022;350:600–612. doi:10.1016/j.jconrel.2022.08.052
  • Park K, Skidmore S, Hadar J, et al. Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J Control Release. 2019;304:125–134. doi:10.1016/j.jconrel.2019.05.003
  • Clark AG, Wang R, Lomeo J, et al. Investigating structural attributes of drug encapsulated microspheres with quantitative X-ray imaging. J Control Release. 2023;358:626–635. doi:10.1016/j.jconrel.2023.05.019
  • Otte A, Turasan H, Park K. Implications of particle size on the respective solid-state properties of naltrexone in PLGA microparticles. Int J Pharm. 2022;626:122170. doi:10.1016/j.ijpharm.2022.122170
  • Mylonaki I, Allemann E, Delie F, Jordan O. Imaging the porous structure in the core of degrading PLGA microparticles: the effect of molecular weight. J Control Release. 2018;286:231–239. doi:10.1016/j.jconrel.2018.07.044
  • Wang J, Helder L, Shao J, Jansen JA, Yang M, Yang F. Encapsulation and release of doxycycline from electrospray-generated PLGA microspheres: effect of polymer end groups. Int J Pharm. 2019;564:1–9. doi:10.1016/j.ijpharm.2019.04.023
  • Meeus J, Lenaerts M, Scurr DJ, et al. The influence of spray-drying parameters on phase behavior, drug distribution, and in vitro release of injectable microspheres for sustained release. J Pharm Sci. 2015;104:1451–1460. doi:10.1002/jps.24361
  • Falsafi SR, Rostamabadi H, Assadpour E, Jafari SM. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques, CLSM/SEM/TEM/AFM. Adv Colloid Interface Sci. 2020;280:102166. doi:10.1016/j.cis.2020.102166
  • Wang X, Wang Y, Wei K, Zhao N, Zhang S, Chen J. Drug distribution within poly(ɛ-caprolactone) microspheres and in vitro release. J Mater Process Technol. 2009;209:348–354. doi:10.1016/j.jmatprotec.2008.02.004
  • Wan B, Andhariya JV, Bao Q, Wang Y, Zou Y, Burgess DJ. Effect of polymer source on in vitro drug release from PLGA microspheres. Int J Pharm. 2021;607:120907. doi:10.1016/j.ijpharm.2021.120907
  • Zhang S, Wu D, Zhou L. Characterization of controlled release microspheres using FIB-SEM and image-based release prediction. AAPS Pharm Sci Tech. 2020;21:194. doi:10.1208/s12249-020-01741-w
  • Yeoh T, Ma L, Badruddoza AZ, Shah J, Zhang S. Semisolid pharmaceutical product characterization using non-invasive X-ray microscopy and AI-based image analytics. AAPS J. 2022;24:46. doi:10.1208/s12248-022-00696-z
  • Koshari SHS, Shi X, Jiang L, et al. Design of PLGA-based drug delivery systems using a physically-based sustained release model. J Pharm Sci. 2022;111:345–357. doi:10.1016/j.xphs.2021.09.007
  • Ma G. Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications. J Control Release. 2014;193:324–340. doi:10.1016/j.jconrel.2014.09.003
  • Acharya G, Shin CS, Vedantham K, et al. A study of drug release from homogeneous PLGA microstructures. J Control Release. 2010;146:201–206. doi:10.1016/j.jconrel.2010.03.024
  • Kasperczyk J, Stoklosa K, Dobrzynski P, Stepien K, Kaczmarczyk B, Dzierzega-Lecznar A. Designing bioresorbable polyester matrices for controlled doxorubicin release in glioma therapy. Int J Pharm. 2009;382:124–129. doi:10.1016/j.ijpharm.2009.08.022
  • Jyothi NV, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY. Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul. 2010;27:187–197. doi:10.3109/02652040903131301
  • Al-Maaieh A, Flanagan DR. Salt and cosolvent effects on ionic drug loading into microspheres using an O/W method. J Control Release. 2001;70:169–181. doi:10.1016/S0168-3659(00)00347-3
  • Xie T, Taylor LS. Dissolution performance of high drug loading celecoxib amorphous solid dispersions formulated with polymer combinations. Pharm Res. 2016;33:739–750. doi:10.1007/s11095-015-1823-y
  • Tian Y, Jones DS, Andrews GP. An investigation into the role of polymeric carriers on crystal growth within amorphous solid dispersion systems. Mol Pharm. 2015;12:1180–1192. doi:10.1021/mp500702s
  • Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev. 2016;100:27–50. doi:10.1016/j.addr.2015.12.010
  • Zhang C, Bodmeier R. A comparative study of PLGA microparticle properties loaded with micronized, nanosized or dissolved drug. Int J Pharm. 2022;628:122313. doi:10.1016/j.ijpharm.2022.122313
  • Giles MB, Hong JKY, Liu Y, et al. Efficient aqueous remote loading of peptides in poly (lactic-co-glycolic acid). Nat Commun. 2022;13:3282. doi:10.1038/s41467-022-30813-7
  • Yang F, Chen D, Guo ZF, et al. The application of novel nano-thermal and imaging techniques for monitoring drug microstructure and distribution within PLGA microspheres. Int J Pharm. 2017;522:34–49. doi:10.1016/j.ijpharm.2017.02.056
  • Martín-Sabroso C, Fraguas-Sánchez AI, Aparicio-Blanco J, Cano-Abad MF, Torres-Suárez AI. Critical attributes of formulation and of elaboration process of PLGA-protein microparticles. Int J Pharm. 2015;480:27–36. doi:10.1016/j.ijpharm.2015.01.008
  • Choi HS, Seo SA, Khang G, Rhee JM, Lee HB. Preparation and characterization of fentanyl-loaded PLGA microspheres: in vitro release profiles. Int J Pharm. 2002;234:195–203. doi:10.1016/S0378-5173(01)00968-1
  • Fredenberg S, Wahlgren M, Reslow M, Axelsson A. Pore formation and pore closure in poly(D, L-lactide-co-glycolide) films. J Control Release. 2011;150:142–149. doi:10.1016/j.jconrel.2010.11.020
  • Kang J, Schwendeman SP. Pore closing and opening in biodegradable polymers and their effect on the controlled release of proteins. Mol Pharm. 2007;4:104–118. doi:10.1021/mp060041n
  • Mazzara JM, Balagna MA, Thouless MD, Schwendeman SP. Healing kinetics of microneedle-formed pores in PLGA films. J Control Release. 2013;171:172–177. doi:10.1016/j.jconrel.2013.06.035
  • Wan F, Bohr XJ, Baldursdottir A, Maltesen GS, Bjerregaard JM. Impact of PLGA molecular behavior in the feed solution on the drug release kinetics of spray dried microparticles. Polymer. 2013;54:5920–5927. doi:10.1016/j.polymer.2013.08.044
  • Pistel KF, Kissel T. Effects of salt addition on the microencapsulation of proteins using W/O/W double emulsion technique. J Microencapsul. 2000;17:467–483. doi:10.1080/026520400405723
  • Yoo J, Won YY. Phenomenology of the initial burst release of drugs from PLGA Microparticles. ACS Biomater Sci Eng. 2020;6:6053–6062. doi:10.1021/acsbiomaterials.0c01228
  • Zhou J, Hirota K, Ackermann R, et al. Reverse Engineering the 1-Month Lupron Depot®. Aaps j. 2018;20:105. doi:10.1208/s12248-018-0253-2
  • Hua Y, Wang Z, Wang D, et al. Key Factor Study for Generic Long-Acting PLGA microspheres based on a reverse engineering of vivitrol(®). Molecules. 2021;26:1247. doi:10.3390/molecules26051247
  • Butreddy A, Gaddam RP, Kommineni N, Dudhipala N, Voshavar C. PLGA/PLA-based long-acting injectable depot microspheres in clinical use: production and characterization overview for protein/peptide delivery. Int J Mol Sci. 2021;22:8884. doi:10.3390/ijms22168884
  • Berkland C, Kipper MJ, Narasimhan B, Kim KK, Pack DW. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. J Control Release. 2004;94:129–141. doi:10.1016/j.jconrel.2003.09.011
  • Park K, Otte A, Sharifi F, et al. Formulation composition, manufacturing process, and characterization of poly(lactide-co-glycolide) microparticles. J Control Release. 2021;329:1150–1161. doi:10.1016/j.jconrel.2020.10.044
  • Quan P, Guo W, LinYang DC, Yang M, Yang M. Donepezil accelerates the release of PLGA microparticles via catalyzing the polymer degradation regardless of the end groups and molecular weights. Int J Pharm. 2023;632:122566. doi:10.1016/j.ijpharm.2022.122566
  • Chen W, Palazzo A, Hennink WE, Kok RJ. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Mol Pharm. 2017;14:459–467. doi:10.1021/acs.molpharmaceut.6b00896
  • Vay K, Frieß W, Scheler S. A detailed view of microparticle formation by in-process monitoring of the glass transition temperature. Eur J Pharm Biopharm 2012;81:399–408. doi:10.1016/j.ejpb.2012.02.019
  • Lanao RPF, Jonker AM, Wolke JGC, Jansen JA, van Hest JCM, Leeuwenburgh SCG. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng Part B, Rev. 2013;19:380–390. doi:10.1089/ten.teb.2012.0443
  • Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater. 2020;9:153–174. doi:10.1007/s40204-020-00139-y
  • Choi J, Jang BN, Park BJ, Joung YK, Han DK. Effect of solvent on drug release and a spray-coated matrix of a sirolimus-eluting stent coated with poly(lactic-co-glycolic acid. Langmuir. 2014;30:10098–10106. doi:10.1021/la500452h
  • Muhaimin M, Chaerunisaa AY, Bodmeier R. Polymer type effect on PLGA-based microparticles preparation by solvent evaporation method with single emulsion system using focussed beam reflectance measurement. J Microencapsul. 2022;39:512–521. doi:10.1080/02652048.2022.2116120
  • Shen J, Choi S, Qu W, Wang Y, Burgess DJ. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres. J Control Release. 2015;218:2–12. doi:10.1016/j.jconrel.2015.09.051
  • Andhariya JV, Shen J, Wang Y, Choi S, Burgess DJ. Effect of minor manufacturing changes on stability of compositionally equivalent PLGA microspheres. Int J Pharm. 2019;566:532–540. doi:10.1016/j.ijpharm.2019.06.014
  • Avachat AM, Bornare PN, Dash RR. Sustained release microspheres of ropinirole hydrochloride: effect of process parameters. Acta Pharm. 2011;61:363–376. doi:10.2478/v10007-011-0032-4
  • Le MQ, Violet F, Paniagua C, Garric X, Venier-Julienne MC. Penta-block copolymer microspheres: impact of polymer characteristics and process parameters on protein release. Int J Pharm. 2018;535:428–437. doi:10.1016/j.ijpharm.2017.11.033
  • Mao S, Xu J, Cai C, Germershaus O, Schaper A, Kissel T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm. 2007;334:137–148. doi:10.1016/j.ijpharm.2006.10.036
  • Zhou J, Schutzman R, Shi N-Q, et al. Influence of encapsulation variables on formation of leuprolide-loaded PLGA microspheres. J Colloid Interface Sci. 2023;636:401–412. doi:10.1016/j.jcis.2022.11.122
  • Naskar S, Das SK, Sharma S, Kuotsu K. A review on designing poly (Lactic-co-glycolic Acid) nanoparticles as drug delivery systems. Pharm Nanotechnol. 2021;9:36–50. doi:10.2174/2211738508666201214103010
  • Ramazani F, Chen W, van Nostrum CF, et al. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: state-of-The-art and challenges. Int J Pharm. 2016;499:358–367. doi:10.1016/j.ijpharm.2016.01.020
  • Gaignaux A, Réeff J, Siepmann F, et al. Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int J Pharm. 2012;437:20–28. doi:10.1016/j.ijpharm.2012.08.006
  • Ekanem EE, Nabavi SA, Vladisavljević GT, Gu S. Structured biodegradable polymeric microparticles for drug delivery produced using flow focusing glass microfluidic devices. ACS Appl Mater Interfaces. 2015;7:23132–23143. doi:10.1021/acsami.5b06943
  • Sarkar Das S, Lucas AD, Carlin AS, Zheng J, Patwardhan DV, Saylor DM. Controlled initial surge despite high drug fraction and high solubility. Pharm Dev Technol. 2017;22:35–44. doi:10.3109/10837450.2015.1135341
  • Li M, Rouaud O, Poncelet D. Microencapsulation by solvent evaporation: state of the art for process engineering approaches. Int J Pharm. 2008;363:26–39. doi:10.1016/j.ijpharm.2008.07.018
  • Wan F, Bohr A, Maltesen MJ, et al. Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded plga microparticles via spray-drying. Pharm Res. 2013;30:1065–1076. doi:10.1007/s11095-012-0943-x
  • Frindy S, Primo A, Qaiss Ael K, et al. Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres. Carbohydr Polym. 2016;146:353–361. doi:10.1016/j.carbpol.2016.03.077
  • Deshmukh R, Wagh P, Naik J. Solvent evaporation and spray drying technique for micro- and nanospheres/particles preparation: a review. Drying Technol 2016;34:1758–1772. doi:10.1080/07373937.2016.1232271
  • Qian L, Zhang H. Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J Chem Technol Biotechnol. 2010;2010:1.
  • Kim TH, Park TG. Critical effect of freezing/freeze-drying on sustained release of FITC-dextran encapsulated within PLGA microspheres. Int J Pharm. 2004;271:207–214. doi:10.1016/j.ijpharm.2003.11.021
  • Ghaleh H, Abbasi F, Alizadeh M, Khoshfetrat AB. Mimicking the quasi-random assembly of protein fibers in the dermis by freeze-drying method. Mater Sci Eng C Mater Biol Appl. 2015;49:807–815. doi:10.1016/j.msec.2015.01.071
  • Wu Z, Zhao M, Zhang W, Yang Z, Xu S, Shang Q. Influence of drying processes on the structures, morphology and in vitro release profiles of risperidone-loaded PLGA microspheres. J Microencapsul. 2019;36:21–31. doi:10.1080/02652048.2019.1582723
  • Barbosa-Alfaro D, Andrés-Guerrero V, Fernandez-Bueno I, et al. Dexamethasone PLGA Microspheres for Sub-Tenon Administration: influence of Sterilization and Tolerance Studies. Pharmaceutics. 2021;13. doi:10.3390/pharmaceutics13020228
  • Selmin F, Puoci F, Parisi OI, Franzé S, Musazzi UM, Cilurzo F. Caffeic Acid-PLGA conjugate to design protein drug delivery systems stable to irradiation. J Funct Biomater. 2015;6:1–13. doi:10.3390/jfb6010001
  • Keles H, Naylor A, Clegg F, Sammon C. Investigation of factors influencing the hydrolytic degradation of single PLGA microparticles. Polym Degrad Stab. 2015;119:228–241. doi:10.1016/j.polymdegradstab.2015.04.025
  • Zhang S, Nagapudi K, Shen M, et al. Release mechanisms and practical percolation threshold for long-acting biodegradable implants: an image to simulation study. J Pharm Sci. 2022;111:1896–1910. doi:10.1016/j.xphs.2021.12.009
  • Liu Z, Li L, Zhang S, et al. Correlative image-based release prediction and 3D microstructure characterization for a long acting parenteral Implant. Pharm Res. 2021;38:1915–1929. doi:10.1007/s11095-021-03145-2
  • Serri C, Frigione M, Ruponen M, et al. Electron dispersive X-ray spectroscopy and degradation properties of hyaluronic acid decorated microparticles. Colloids Surf B Biointerfaces. 2019;181:896–901. doi:10.1016/j.colsurfb.2019.06.044
  • Wu L, Wang M, Singh V, et al. Three dimensional distribution of surfactant in microspheres revealed by synchrotron radiation X-ray microcomputed tomography. Asian J Pharm Sci. 2017;12:326–334. doi:10.1016/j.ajps.2017.02.001
  • Guo Z, Yin X, Liu C, et al. Microstructural investigation using synchrotron radiation X-ray microtomography reveals taste-masking mechanism of Acetaminophen microspheres. Int J Pharm. 2016;499:47–57. doi:10.1016/j.ijpharm.2015.12.045
  • Pivette P, Faivre V, Mancini L, et al. Controlled release of a highly hydrophilic API from lipid microspheres obtained by prilling: analysis of drug and water diffusion processes with X-ray-based methods. J Control Release. 2012;158:393–402. doi:10.1016/j.jconrel.2011.11.027
  • Zhu C, Peng T, Huang D, et al. Formation mechanism vitro and in vivo evaluation of dimpled exenatide loaded PLGA microparticles prepared by ultra-fine particle processing system, AAPS pharm. Sci Tech. 2019;20:64.
  • Pygall SR, Whetstone J, Timmins P, Melia CD. Pharmaceutical applications of confocal laser scanning microscopy: the physical characterisation of pharmaceutical systems. Adv Drug Deliv Rev. 2007;59:1434–1452. doi:10.1016/j.addr.2007.06.018
  • Butler HJ, Ashton L, Bird B, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11:664–687.
  • Moffat JG, Qi S, Craig DQ. Spatial characterization of hot melt extruded dispersion systems using thermal atomic force microscopy methods: the effects of processing parameters on phase separation. Pharm Res. 2014;31:1744–1752. doi:10.1007/s11095-013-1279-x
  • Rafati A, Boussahel A, Shakesheff KM, et al. Chemical and spatial analysis of protein loaded PLGA microspheres for drug delivery applications. J Control Release. 2012;162(2):321–329. doi:10.1016/j.jconrel.2012.05.008
  • Meeus J, Scurr DJ, Appeltans B, et al. Influence of formulation composition and process on the characteristics and in vitro release from PLGA-based sustained release injectables. Eur J Pharm Biopharm. 2015;90:22–29. doi:10.1016/j.ejpb.2014.11.009
  • Henry MD, Shearn MJ, Chhim B, Scherer A. Ga(+) beam lithography for nanoscale silicon reactive ion etching. Nanotechnology. 2010;21:245303. doi:10.1088/0957-4484/21/24/245303
  • Zhang Z, Ekanem EE, Nakajima M, Bolognesi G, Vladisavljević GT. Monodispersed sirolimus-loaded PLGA microspheres with a controlled degree of drug-polymer phase separation for drug-coated implantable medical devices and subcutaneous injection. ACS Appl Bio Mater. 2022;5:3766–3777. doi:10.1021/acsabm.2c00319
  • Fitzgerald R, Keil K, Heinrich KF. Solid-state energy-dispersion spectrometer for electron-microprobe x-ray analysis. Science. 1968;159:528–530. doi:10.1126/science.159.3814.528
  • Nagapudi K, Zhu A, Chang DP, et al. Microstructure, quality, and release performance characterization of long-acting polymer implant formulations with X-Ray microscopy and quantitative AI analytics. J Pharm Sci. 2021;110:3418–3430. doi:10.1016/j.xphs.2021.05.016
  • Yang S, Yin X, Wang C, et al. Release behaviour of single pellets and internal fine 3D structural features co-define the in vitro drug release profile. AAPS J. 2014;16:860–871. doi:10.1208/s12248-014-9611-x
  • Qin W, He Y, Guo Z, et al. Optimization of taste-masking on ibuprofen microspheres with selected structure features. Asian J Pharm Sci. 2019;14:174–182. doi:10.1016/j.ajps.2018.05.003
  • Yin X, Li H, Guo Z, et al. Quantification of swelling and erosion in the controlled release of a poorly water-soluble drug using synchrotron X-ray computed microtomography. AAPS J. 2013;15:1025–1034. doi:10.1208/s12248-013-9498-y
  • Tang FC, Wu ZB, Yang C, et al. Synchrotron X-Ray tomography for rechargeable battery research: fundamentals, setups and applications. Small Methods. 2021;5:1.
  • Vijayakumar J, Goudarzi NM, Eeckhaut G, Schrijnemakers K, Cnudde V, Boone MN. Characterization of Pharmaceutical Tablets by X-ray Tomography. Pharmaceuticals. 2023;16:1.
  • Wang M, Lu X, Yin X, et al. Synchrotron radiation-based Fourier-transform infrared spectromicroscopy for characterization of the protein/peptide distribution in single microspheres. Acta Pharm Sin B. 2015;5:270–276. doi:10.1016/j.apsb.2015.03.008
  • Zhai P, Chen XB, Schreyer DJ. PLGA/alginate composite microspheres for hydrophilic protein delivery. Mater Sci Eng C Mater Biol Appl. 2015;56:251–259. doi:10.1016/j.msec.2015.06.015
  • Sun F, Yu C, Liu X, et al. Butyl stearate prolongs the drug release period of isoperidone‑loaded poly (lactic‑co‑glycolic acid) microspheres: in vitro and in vivo investigation. Mol Med Rep. 2019;19:1595–1602. doi:10.3892/mmr.2018.9797
  • Di J, Wang J, Wang S, et al. Self-boosting vaccination based on pulsatile antigen release from core-shell microparticles. Small. 2023;19:e2207892. doi:10.1002/smll.202207892
  • Shi C, Feng S, Liu P, Liu X, Feng X, Fu D. A novel study on the mechanisms of drug release in PLGA-mPEG microspheres with fluorescent drug. J Biomater Sci Polym Ed. 2016;27:854–864. doi:10.1080/09205063.2016.1166727
  • Hirota K, Doty AC, Ackermann R, et al. Characterizing release mechanisms of leuprolide acetate-loaded PLGA microspheres for IVIVC development I: in vitro evaluation. J Control Release. 2016;244:302–313. doi:10.1016/j.jconrel.2016.08.023
  • Bergholt MS, Serio A, Albro MB. Raman Spectroscopy: guiding Light for the Extracellular Matrix. Front Bioeng Biotechnol. 2019;7:303. doi:10.3389/fbioe.2019.00303
  • Kroneková Z, Pelach M, Mazancová P, et al. Structural changes in alginate-based microspheres exposed to in vivo environment as revealed by confocal Raman microscopy. Sci Rep. 2018;8:1637. doi:10.1038/s41598-018-20022-y
  • Goh CF, Lane ME. Advanced structural characterisation of pharmaceuticals using nano-thermal analysis (nano-TA. Adv Drug Deliv Rev. 2022;180:114077. doi:10.1016/j.addr.2021.114077
  • Dai X, Moffat JG, Wood J, Reading M. Thermal scanning probe microscopy in the development of pharmaceuticals. Adv Drug Deliv Rev. 2012;64:449–460. doi:10.1016/j.addr.2011.07.008
  • Chan CM, Weng LT. Surface characterization of polymer blends by XPS and ToF-SIMS. Materials (Basel). 2016;9. doi:10.3390/ma9080655
  • Barnes TJ, Kempson IM, Prestidge CA. Surface analysis for compositional, chemical and structural imaging in pharmaceutics with mass spectrometry: a ToF-SIMS perspective. Int J Pharm. 2011;417:61–69. doi:10.1016/j.ijpharm.2011.01.043
  • Meeus J, Scurr DJ, Amssoms K, Davies MC, Roberts CJ, Van den Mooter G. Surface characteristics of spray-dried microspheres consisting of PLGA and PVP: relating the influence of heat and humidity to the thermal characteristics of these polymers. Mol Pharm. 2013;10:3213–3224. doi:10.1021/mp400263d
  • Schutzman R, Shi NQ, Olsen KF, et al. Mechanistic evaluation of the initial burst release of leuprolide from spray-dried PLGA microspheres. J Control Release. 2023;361:297–313.
  • Tipnis NP, Shen J, Jackson D, Leblanc D, Burgess DJ. Flow-through cell-based in vitro release method for triamcinolone acetonide poly (lactic-co-glycolic) acid microspheres. Int J Pharm. 2020;579:119130.
  • Wang T, Xue P, Wang A, et al. Pore change during degradation of octreotide acetate-loaded PLGA microspheres: the effect of polymer blends. Eur J Pharm Sci. 2019;138:104990.