349
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Anticancer Mechanisms and Potential Anticancer Applications of Antimicrobial Peptides and Their Nano Agents

, , , ORCID Icon, , & show all
Pages 1017-1039 | Received 18 Oct 2023, Accepted 16 Jan 2024, Published online: 31 Jan 2024

References

  • Hashim D, Boffetta P, Vecchia CL, et al. The global decrease in cancer mortality: trends and disparities. Ann Oncol. 2016;27(5):926. doi:10.1093/annonc/mdw027
  • Munker S, Gerken M, Fest P, et al. Chemotherapy for metastatic colon cancer: no effect on survival when the dose is reduced due to side effects. BMC Cancer. 2018;18(1):455. doi:10.1186/s12885-018-4380-z
  • Nakashima-Kamimura N, Mori T, Ohsawa I, Asoh S, Ohta S. Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice. Cancer Chemother Pharmacol. 2009;64(4):753–761. doi:10.1007/s00280-008-0924-2
  • Norouzi‐Barough L, Sarookhani MR, Sharifi M, et al. Molecular mechanisms of drug resistance in ovarian cancer. J Cell Physiol. 2018;233(6):4546.
  • Chatterjee S, G Damle S, K Sharma A. Mechanisms of resistance against cancer therapeutic drugs. Curr Pharm Biotechnol. 2014;15(12):1105.
  • Stone TA, Cole GB, Ravamehr-Lake D, Nguyen HQ, Deber CM. Positive charge patterning and hydrophobicity of membrane-active antimicrobial peptides as determinants of activity, toxicity, and pharmacokinetic stability. J Med Chem. 2019;62(13):6276–6286. doi:10.1021/acs.jmedchem.9b00657
  • Gupta S, Bhatia G, Sharma A, Saxena S. Host defense peptides: an insight into the antimicrobial world. J Oral Maxillofac Pathol. 2018;22(2):239.
  • Di YP. Antimicrobial peptides in host defense against drug-resistant bacterial and viral infections. Curr Med Chem. 2020;27(9):1385–1386. doi:10.2174/092986732709200327085156
  • Schröder-Borm H, Bakalova R, Andr J. The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine. FEBS Lett. 2005;579(27):6128–6134. doi:10.1016/j.febslet.2005.09.084
  • Oliva R, Del Vecchio P, Grimaldi A, et al. Membrane disintegration by the antimicrobial peptide (P)GKY20: lipid segregation, domain formation, budding and micellization. PCCP. 2019;21(7):3989–3998. doi:10.1039/C8CP06280C
  • Parchebafi A, Tamanaee F, Ehteram H, Ahmad E, Nikzad H, Haddad Kashani H. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Microb Cell Fact. 2022;21(1):118. doi:10.1186/s12934-022-01848-8
  • Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29(9):464–472. doi:10.1016/j.tibtech.2011.05.001
  • Maraming P, Klaynongsruang S, Boonsiri P, et al. The cationic cell-penetrating KT2 peptide promotes cell membrane defects and apoptosis with autophagy inhibition in human HCT 116 colon cancer cells. J Cell Physiol. 2019;234(12):22116–22129. doi:10.1002/jcp.28774
  • Luo X, Teng Q-X, Dong J-Y, et al. Antimicrobial peptide reverses ABCB1-mediated chemotherapeutic drug resistance. Front Pharmacol. 2020;11:1208. doi:10.3389/fphar.2020.01208
  • Kawami M, Yamada Y, Issarachot O, Junyaprasert VB, Yumoto R, Takano M. P-gp modulating effect of Azadirachta indica extract in multidrug-resistant cancer cell lines. Pharmazie. 2018;73(2):104–109. doi:10.1691/ph.2018.7116
  • Dennison SR, Wallace J, Harris F, Phoenix DA. Amphiphilic alpha-helical antimicrobial peptides and their structure/function relationships. Protein Pept Lett. 2005;12(1):31. doi:10.2174/0929866053406084
  • Banković J, Andrä J, Todorović N, et al. The elimination of P-glycoprotein over-expressing cancer cells by antimicrobial cationic peptide NK-2: the unique way of multi-drug resistance modulation. Exp Cell Res. 2013;319(7):1013.
  • Lu J, Chen ZW. Isolation, characterization and anti-cancer activity of SK84, a novel glycine-rich antimicrobial peptide from Drosophila virilis. Peptides. 2010;31(1):44–50. doi:10.1016/j.peptides.2009.09.028
  • Smolarczyk R, Cichoń T, Szala S, et al. Peptydy – nowa klasa leków przeciwnowotworowych[Peptides: a new class of anticancer drugs]. Postepy Hig Med Dosw. 2009;63(835515):360. Polish.
  • Rothan HA, Ambikabothy J, Ramasamy TS, Rashid NN, Yusof R. A preliminary study in search of potential peptide candidates for a combinational therapy with cancer chemotherapy drug. Int J Pept Res Ther. 2019;25:115–122.
  • Gallo RL, Huttner KM. Antimicrobial peptides: an emerging concept in cutaneous biology. J Invest Dermatol. 1998;111(5):739–743. doi:10.1046/j.1523-1747.1998.00361.x
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–395. doi:10.1038/415389a
  • Lidholm DA, Gudmundsson GH, Xanthopoulos KG, Boman HG. Insect immunity: cDNA clones coding for the precursor forms of cecropins A and D, antibacterial proteins from Hyalophora cecropia. FEBS Lett. 1987;226:8.
  • Gudmundsson GH, Lidholm DA, Asling B, Gan RB, Boman HG. The cecropin locus. Cloning and expression of a gene cluster encoding three antibacterial peptides in Hyalophora cecropia. J Biol Chem. 1991;266(18):11510–11517. doi:10.1016/S0021-9258(18)98986-6
  • Vizioli J, Richman AM, Uttenweiler-Joseph S, Blass C, Bulet P. The defensin peptide of the malaria vector mosquito Anopheles gambiae: antimicrobial activities and expression in adult mosquitoes. Insect Biochem Mol Biol. 2001;31(3):241–248. doi:10.1016/S0965-1748(00)00143-0
  • Bals R, Koczulla AR, Von DG. The human peptide antibiotic LL-37/hCAP-18 is an inducer of angiogenesis. J Clin Invest. 2003;111(11):1665–1672.
  • Braun K, Pochert A, Lindén M, et al. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. J Colloid Interface Sci. 2016;475:161–170. doi:10.1016/j.jcis.2016.05.002
  • Friedrich CL, Rozek A, Patrzykat A, Hancock REW. Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. J Biol Chem. 2001;276(26):24015–24022. doi:10.1074/jbc.M009691200
  • Staubitz P, Peschel A, Nieuwenhuizen WF, et al. Structure–function relationships in the tryptophan‐rich, antimicrobial peptide indolicidin. J Pept Sci. 2010;7:552.
  • Himanshu K, Kaznessis YN. Structure of the antimicrobial beta-hairpin peptide protegrin-1 in a DLPC lipid bilayer investigated by molecular dynamics simulation. Biochim Biophys Acta. 2007;1768(3):509–520. doi:10.1016/j.bbamem.2006.11.015
  • Guerrero E, Saugar JM, Matsuzaki K, Rivas L. Role of positional hydrophobicity in the leishmanicidal activity of magainin 2. Antimicrob Agents Chemother. 2004;48(8):2980. doi:10.1128/AAC.48.8.2980-2986.2004
  • Tomoya T, Epand RF, Epand RM, et al. Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide−lipid interactions and selective toxicity. Biochemistry. 2002;41(34):10723–10731. doi:10.1021/bi0256983
  • Mangoni ML, Papo N, Barra D, et al. Effects of the antimicrobial peptide temporin L on cell morphology,__membrane permeability and viability of Escherichia coli. Biochem J. 2004;380:859–865. doi:10.1042/bj20031975
  • Simmaco M, Mignogna G, Canofeni S, Miele R, Mangoni ML, Temporins BD. Antimicrobial peptides from the European red frog rana temporaria. Eur J Biochem. 1996;243(3):788–792.
  • Brocal I, Falco A, Mas V, et al. Stable expression of bioactive recombinant pleurocidin in a fish cell line. Appl Microbiol Biotechnol. 2006;72(6):1217–1228. doi:10.1007/s00253-006-0393-7
  • Falco MO-V A, Chico V, Brocal I, Perez L, Coll JM, Estepa A. Antimicrobial peptides as model molecules for the development of novel antiviral agents in aquaculture. Mini Rev Med Chem. 2009;9(10):1.
  • Syvitski RT, Burton I, Mattatall NR, Douglas SE, Jakeman DL. Structural characterization of the antimicrobial peptide pleurocidin from winter flounder. Biochemistry. 2005;44(19):7282. doi:10.1021/bi0504005
  • Du ZQ, Jin YH. Molecular characterization and antibacterial activity analysis of two novel penaeidin isoforms from pacific white shrimp, litopenaeus vannamei. Appl Biochem Biotechnol. 2015;177(8):1607–1620. doi:10.1007/s12010-015-1840-7
  • Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachere E. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem. 1997;272(45):28398. doi:10.1074/jbc.272.45.28398
  • Charlet S, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem. 1996;271(36):21808–21813. doi:10.1074/jbc.271.36.21808
  • Epple P, Bohlmann AH. An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol. 1995;109(3):813–820. doi:10.1104/pp.109.3.813
  • Vignutelli A, Wasternack C, Apel K, Bohlmann H. Systemic and local induction of an Arabidopsis thionin gene by wounding and pathogens. Plant J Cell Mol Biol. 2010;14(3):285–295. doi:10.1046/j.1365-313X.1998.00117.x
  • Berrocal-Lobo M, Segura A, Moreno M, Lopez G, Garcia-Olmedo F, Molina A. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol. 2002;128(3):951–961. doi:10.1104/pp.010685
  • Mao Z, Zheng J, Wang Y, et al. The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper. Phytoparasitica. 2011;39(2):151–164. doi:10.1007/s12600-011-0149-5
  • Hiroo Y, Koji O, Kazuhiko T, Nobuo I. Mode of antibacterial action by gramicidin S. J Biochem. 1986;100(5):1253.
  • Gause GF, Brazhnikova MG. Gramicidin S and its use in the treatment of infected wounds. Nature. 1944;154(3918):703. doi:10.1038/154703a0
  • Kaletta C, Entian KD. Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J Bacteriol. 1989;171(3):1597–1601. doi:10.1128/jb.171.3.1597-1601.1989
  • Garcíagarcer MJ, Elferink MGL, Driessen AJM, Konings WN. In vitro pore-forming activity of the lantibiotic nisin. Role of protonmotive force and lipid composition. Eur J Biochem. 2010;212(2):417–422. doi:10.1111/j.1432-1033.1993.tb17677.x
  • Wang Y-P, Lai R. Insect antimicrobial peptides: structures, properties and gene regulation. Zool Res. 2010;31(1):27–34. doi:10.3724/SP.J.1141.2010.01027
  • Sitaram N, Nagaraj R. Host-defense antimicrobial peptides: importance of structure for activity. Curr Pharm Des. 2002;8(9):727–742. doi:10.2174/1381612023395358
  • Lohner K. New strategies for novel antibiotics: peptides targeting bacterial cell membranes. Gen Physiol Biophys. 2009;28(2):105. doi:10.4149/gpb_2009_02_105
  • Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19(3):491–511. doi:10.1128/CMR.00056-05
  • Zhang S, Zhu L, Yu J, et al. Evaluating the potential of a loop-extended scorpion toxin-like peptide as a protein scaffold. Protein Eng Des Sel. 2016;12:12.
  • Irudayam SJ, Berkowitz ML. Influence of the arrangement and secondary structure of melittin peptides on the formation and stability of toroidal pores. Biochim Biophys Acta. 2011;1808(9):2258–2266. doi:10.1016/j.bbamem.2011.04.021
  • Bechinger B, Zasloff M, Opella SJ. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci. 1993;2(12):2077–2084. doi:10.1002/pro.5560021208
  • Taylor K, Barran PE, Dorin JR. Structure-activity relationships in beta-defensin peptides. Biopolymers. 2008;90(1):1–7. doi:10.1002/bip.20900
  • Lele DS, Talat S, Kumari S, Srivastava N, Kaur KJ. Understanding the importance of glycosylated threonine and stereospecific action of Drosocin, a Proline rich antimicrobial peptide. Eur J Med Chem. 2015;92:637–647. doi:10.1016/j.ejmech.2015.01.032
  • Ju YL, Yang ST, Kim HJ, Lee SK, Kim JI. Different modes of antibiotic action of homodimeric and monomeric bactenecin, a cathelicidin-derived antibacterial peptide. Bmb Rep. 2009;42(9):586. doi:10.5483/BMBRep.2009.42.9.586
  • Son WS, Kim JS, Kim HE, Park SH, Lee BJ. Structural studies on the antimicrobial peptide Brevinin 1E by spectroscopic methods. Spectrosc Int J. 2003;17(2–3):127–138.
  • Thaker HD, Cankaya A, Scott RW, Tew GN. Role of amphiphilicity in the design of synthetic mimics of antimicrobial peptides with gram-negative activity. ACS Med Chem Lett. 2013;4(5):481. doi:10.1021/ml300307b
  • Liu Y, Jasensky J, Chen Z. Molecular interactions of proteins and peptides at interfaces studied by sum frequency generation vibrational spectroscopy. Langmuir. 2012;28(4):2113–2121.
  • Michael Z. Antimicrobial peptides of multicellular organisms: my perspective. Adv Exp Med Biol. 2019;1117:3–6. doi:10.1007/978-981-13-3588-4_1
  • Brogden KA, Ackermann M, McCray PB, Tack BF. Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents. 2003;22(5):465–478. doi:10.1016/s0924-8579(03)00180-8
  • Otte JM, Zdebik AE, Brand S, et al. Effects of the cathelicidin LL-37 on intestinal epithelial barrier integrity. Regul Pept. 2009;156(1–3):104–117. doi:10.1016/j.regpep.2009.03.009
  • Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol. 2004;22(1):181–215. doi:10.1146/annurev.immunol.22.012703.104603
  • Pan CY, Lin CN, Chiou MT, Yu CY, Chien CH. The antimicrobial peptide pardaxin exerts potent anti-tumor activity against canine perianal gland adenoma. Oncotarget. 2015;6(4):2290–2301. doi:10.18632/oncotarget.2959
  • Roudi R, Syn NL, Roudbary M. Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front Immunol. 2017;8:1320.
  • Leite ML, da Cunha NB, Costa FF. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther. 2018;183:160–176.
  • Hancock REW, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000;8(9):402–410. doi:10.1016/s0966-842x(00)01823-0
  • Suarez-Carmona M, Hubert P, Delvenne P, Herfs MD. “Simple” antimicrobial peptides or broad-spectrum molecules? Cytokine Growth Factor Rev. 2015;26(3):361–370. doi:10.1016/j.cytogfr.2014.12.005
  • Batista Araujo J, Sastre de Souza G, Lorenzon EN. Indolicidin revisited: biological activity, potential applications and perspectives of an antimicrobial peptide not yet fully explored. World J Microbiol Biotechnol. 2022;38(3):39. doi:10.1007/s11274-022-03227-2
  • Scavello F, Amiche M, Ghia J-E. Recent advances in multifunctional antimicrobial peptides as immunomodulatory and anticancer therapy: chromogranin a-derived peptides and dermaseptins as endogenous versus exogenous actors. Pharmaceutics. 2022;14(10):2014. doi:10.3390/pharmaceutics14102014
  • Bhargava A, Osusky M, Hancock RE, Forward BS, Kay WW, Misra S. Antiviral indolicidin variant peptides: evaluation for broad-spectrum disease resistance in transgenic Nicotiana tabacum. Plant Sci. 2007;172(3):515–523. doi:10.1016/j.plantsci.2006.10.016
  • Jang WS, Edgerton M. Salivary histatins: structure, function, and mechanisms of antifungal activity. Candida Candidiasis. 2011;185–194.
  • Matejuk A, Leng Q, Begum MD, et al. Peptide-based antifungal therapies against emerging infections. Drugs Future. 2010;35(3):197. doi:10.1358/dof.2010.35.3.1452077
  • Pistolic J, Cosseau C, Li Y, et al. Host defence peptide LL-37 induces IL-6 expression in human bronchial epithelial cells by activation of the NF-kappaB signaling pathway. J Innate Immun. 2009;1(3):254–267. doi:10.1159/000171533
  • Robinson WE, McDougall B, Tran D, Selsted ME. Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J Leukoc Biol. 1998;63(1):94–100. doi:10.1002/jlb.63.1.94
  • Klotman ME, Chang TL. Defensins in innate antiviral immunity. Nat Rev Immunol. 2006;6(6):447–456. doi:10.1038/nri1860
  • Guo C, Cong P, He Z, et al. Inhibitory activity and molecular mechanism of protegrin-1 against porcine reproductive and respiratory syndrome virus in vitro. Antivir Ther. 2015;20(6):573–582. doi:10.3851/IMP2918
  • Pretzel J, Mohring F, Rahlfs S, Becker K. Antiparasitic peptides. In: Yellow Biotechnology I: Insect Biotechnologie in Drug Discovery and Preclinical Research. Springer; 2013:157–192.
  • Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules. 2020;25(12):2850. doi:10.3390/molecules25122850
  • Hirsch T, Spielmann M, Zuhaili B, et al. Human beta-defensin-3 promotes wound healing in infected diabetic wounds. J Gene Med. 2009;11(3):220–228. doi:10.1002/jgm.1287
  • Tomioka H, Nakagami H, Tenma A, et al. Novel anti-microbial peptide SR-0379 accelerates wound healing via the PI3 kinase/Akt/mTOR pathway. PLoS One. 2014;9(3):e92597. doi:10.1371/journal.pone.0092597
  • Mader JS, Hoskin DW. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Invest Drugs. 2006;15(8):933–946. doi:10.1517/13543784.15.8.933
  • Feix SJB. Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim Biophys Acta. 2006;1758(9):1245–1256.
  • Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008;1778(2):357–375. doi:10.1016/j.bbamem.2007.11.008
  • Yang P, Ramamoorthy A, Chen Z. Membrane orientation of MSI-78 measured by sum frequency generation vibrational spectroscopy. Langmuir. 2011;27(12):7760.
  • Papo N, Braunstein A, Eshhar Z, Shai Y. Suppression of human prostate tumor growth in mice by a cytolytic d -, l -amino acid peptide. Cancer Res. 2004;64(16):5779–5786. doi:10.1158/0008-5472.CAN-04-1438
  • Benincasa M, Runti G, Mardirossian M, Scocchi M. Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria. Curr Top Med Chem. 2016;16(1):76–88. doi:10.2174/1568026615666150703121009
  • He K, Ludtke SJ, Worcester DL, Huang HW. Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophys J. 1996;70(6):2659–2666. doi:10.1016/S0006-3495(96)79835-1
  • Powers JPS, Hancock REW. The relationship between peptide structure and antibacterial activity. Peptides. 2003;24(11):0–1691. doi:10.1016/j.peptides.2003.08.023
  • Dobrzyńska I, Szachowicz-Petelska B, Sulkowski S, Figaszewski Z. Changes in electric charge and phospholipids composition in human colorectal cancer cells. Mol Cell Biochem. 2005;276(1–2):113–119. doi:10.1007/s11010-005-3557-3
  • Yoon WH, Park HD, Lim K, Hwang BD. Effect of O-glycosylated mucin on invasion and metastasis of HM7 human colon cancer cells. Biochem Biophys Res Commun. 1996;222(3):0–699. doi:10.1006/bbrc.1996.0806
  • Price JAR, Pethig R, Lai CN, Becker FF, Szent-Györgyi A. Changes in cell surface charge and transmembrane potential accompanying neoplastic transformation of rat kidney cells. Biochim Biophys Acta. 1987;898(2):129–136. doi:10.1016/0005-2736(87)90031-9
  • Papo N, Shahar M, Eisenbach L, Shai Y. A novel lytic peptide composed of DL-amino acids selectively kills cancer cells in culture and in mice. J Biol Chem. 2003;278(23):21018–21023. doi:10.1074/jbc.M211204200
  • Chan SC, Hui L, Chen HM. Enhancement of the cytolytic effect of anti-bacterial cecropin by the microvilli of cancer cells. Anticancer Res. 1998;18(6A):4467–4474.
  • Domagala W, Koss LG. Surface configuration of human tumor cells obtained by fine needle aspiration biopsy. Scan Electron Microsc. 1980;3(3):101–108.
  • Pohl A, Lage H, Müller P, Pomorski T, Herrmann A. Transport of phosphatidylserine via MDR1 (multidrug resistance 1)P-glycoprotein in a human gastric carcinoma cell line. Biochem J. 2002;365(1):259–268. doi:10.1042/bj20011880
  • Yu Hang L, Shi Liang Y, Guo Gan X, Ha Pan S, Qiu Teng Y, An R-H. Externalization of phosphatidylserine via multidrug resistance 1 (MDR1)/P-glycoprotein in oxalate-treated renal epithelial cells: implications for calcium oxalate urolithiasis. Int Urol Nephrol. 2016;48(2):175–181. doi:10.1007/s11255-015-1155-1
  • Wang KR, Yan JX, Zhang BZ, Song JJ, Jia PF, Wang R. Novel mode of action of polybia-MPI, a novel antimicrobial peptide, in multi-drug resistant leukemic cells. Cancer Lett. 2009;278(1):65–72. doi:10.1016/j.canlet.2008.12.027
  • Oren Z, Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 1998;47(6):451–463. doi:10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F
  • Priyadarshini D, Ivica J, Separovic F, de Planque MRR. Characterisation of cell membrane interaction mechanisms of antimicrobial peptides by electrical bilayer recording. Biophys Chem. 2022;281:106721. doi:10.1016/j.bpc.2021.106721
  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model_ a case study on melittin pores. Biophys J. 2001;81(3):1475–1485. doi:10.1016/S0006-3495(01)75802-X
  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27–55. doi:10.1124/pr.55.1.2
  • Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW. Membrane pores induced by magainin. Biochemistry. 1996;35(43):13723–13728. doi:10.1021/bi9620621
  • Wang YQ, Cai JY, Ma S, Zhang X. Effects of the antimicrobial peptide magaininIIon Escherichia coli observed by atomic force microscopy. J Chin Electron Microsc Soc. 2006;25(1):52–56.
  • Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation †. Biochemistry. 1996;35(35):11361–11368. doi:10.1021/bi960016v
  • Park SC, Kim JY, Shin SO, et al. Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy. Biochem Biophys Res Commun. 2006;343(1):222–228. doi:10.1016/j.bbrc.2006.02.090
  • Yamaguchi S, Hong T, Waring A, Lehrer RI, Hong M. Solid-state NMR investigations of peptide-lipid interaction and orientation of a beta-sheet antimicrobial peptide, protegrin. Biochemistry. 2002;41(31):9852–9862. doi:10.1021/bi0257991
  • Wu M, Maier E, Benz R, Hancock REW. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli ? Biochemistry. 1999;38(22):7235–7242. doi:10.1021/bi9826299
  • Hari L. Antimicrobial peptides in action. Journal of the American Chemical Society. 2006;128(37):12156–12161.
  • Aarbiou J, Tjabringa GS, Verhoosel RM, et al. Mechanisms of cell death induced by the neutrophil antimicrobial peptides α-defensins and LL-37. Inflamm Res. 2006;55(3):119–127. doi:10.1007/s00011-005-0062-9
  • Liu ZY, Xu T, Zheng ST, Zhang LT, Zhang FC. Study on the interaction mechanism of antimicrobial peptide Cecropin-XJ in Xinjiang silkworm and Staphylococcus aureus DNA by spectra. Spectrosc Spectral Anal. 2008;28(3):612–616.
  • Wang F, Zhang SQ, Dai ZY. Studies on the action of the CM4-ABP anti K562 cancer cells by SCGE. Prog Biochem Biophys. 1998;1998:1.
  • Jaynes JM. Lytic peptides, use for growth, infection and cancer. Schweiz Pat. 2000;1:38.
  • Chen HM, Leung KW, Thakur NN, Tan A, Jack RW. Distinguishing between different pathways of bilayer disruption by the related antimicrobial peptides cecropin B, B1 and B3. Eur J Biochem. 2003;270(5):911–920. doi:10.1046/j.1432-1033.2003.03451.x
  • Theansungnoen T, Maijaroen S, Jangpromma N, et al. Cationic antimicrobial peptides derived fromCrocodylus siamensisLeukocyte extract, revealing anticancer activity and apoptotic induction on human cervical cancer cells. Protein J. 2016;35(3):202–211. doi:10.1007/s10930-016-9662-1
  • Chavakis T, Cines DB, Rhee JS, et al. Regulation of neovascularization by human neutrophil peptides (α-defensins): a link between inflammation and angiogenesis. FASEB J. 2004;18(11):1306–1308. doi:10.1096/fj.03-1009fje
  • Lee HS, Chan BP, Kim JM, et al. Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett. 2008;271(1):0–55. doi:10.1016/j.canlet.2008.05.041
  • Bhat S, Milner S. Antimicrobial peptides in burns and wounds. Curr Protein Peptide Sci. 2007;8(5):506–520. doi:10.2174/138920307782411428
  • Hiemstra PS, Amatngalim GD, Does AMVD, Taube C. Antimicrobial peptides and innate lung defenses: role in infectious and noninfectious lung diseases and therapeutic applications. Chest. 2016;149(2):545–551. doi:10.1378/chest.15-1353
  • Davidson DJ, Currie AJ, Reid GS, et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol. 2004;172(2):1146–1156. doi:10.4049/jimmunol.172.2.1146
  • Xia L, Wu Y, Ma JI, Yang J, Zhang F. The antibacterial peptide from Bombyx mori cecropinXJ induced growth arrest and apoptosis in human hepatocellular carcinoma cells. Oncol Lett. 2016;12(1):57–62. doi:10.3892/ol.2016.4601
  • Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget. 2017;8(28):46635.
  • Balandin SV, Emelianova AA, Kalashnikova MB, Kokryakov VN, Shamova OV, Ovchinnikova TV. Molecular mechanisms of antitumor effect of natural antimicrobial peptides. Russ J Bioorganic Chem. 2016;42(6):575–589. doi:10.1134/S1068162016060029
  • Saravanan D, Mohammed Al-Kassim H. A Review Of Potential Anticancers From Antimicrobial Peptides. Int J Pharm Pharm Sci. 2015;7(4):19–26.
  • Papo N, Shai Y. Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci Cmls. 2005;62(7–8):784–790. doi:10.1007/s00018-005-4560-2
  • Jacob L, Zasloff M. Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. Ciba Found Symp. 1994;186:197. doi:10.1002/9780470514658.ch12
  • Baker MA, Maloy WL, Zasloff M, Jacob LS. Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res. 1993;53(13):3052.
  • Chen HM, Wei W, Smith D, Chan SC. Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta. 1997;1336(2):171–179. doi:10.1016/S0304-4165(97)00024-X
  • Moore A, Devine D, Bibby MC. Preliminary experimental anticancer activity of cecropins. Pept Res. 1994;7(5):265–269.
  • Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI. Primary structures of three human neutrophil defensins. J Clin Invest. 1985;76(4):1436–1439. doi:10.1172/JCI112121
  • Pausch T, Adolph S, Felix K, et al. Antimicrobial peptide human neutrophil peptide 1 as a potential link between chronic inflammation and ductal adenocarcinoma of the pancreas. Pancreas. 2018;47(5):561–567. doi:10.1097/MPA.0000000000001054
  • Nishimura M, Abiko Y, Kurashige Y, et al. Effect of defensin peptides on eukaryotic cells: primary epithelial cells, fibroblasts and squamous cell carcinoma cell lines. J Dermatol Sci. 2004;36(2):87–95. doi:10.1016/j.jdermsci.2004.07.001
  • Strzelecka P, Czaplinska D, Sadej R, Wardowska A, Pikula M, Lesner A. Simplified, serine-rich theta-defensin analogues as antitumour peptides. Chem Biol Drug Des. 2017;90(1):52–63. doi:10.1111/cbdd.12927
  • Bensch KW, Raida M, M/igert H-J, Schulz-Knappe P, Forssmann W-G. hBD-I_ a novel fl-defensin from human plasma. FEBS Lett. 1995;368:331–335. doi:10.1016/0014-5793(95)00687-5
  • Baindara P, Gautam A, Raghava GPS, Korpole S. Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci Rep. 2017;7:46541. doi:10.1038/srep46541
  • Gerashchenko OL, Zhuravel EV, Skachkova OV, et al. Biologic activities of recombinant human-beta-defensin-4 toward cultured human cancer cells. Exp Oncol. 2013;35(2):76.
  • Bellamy WR, Takase M, Wakabayashi H, Kawase K, Tomita M. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol. 1993;73(6):472–479. doi:10.1111/j.1365-2672.1992.tb05007.x
  • Eliassen LT, Berge G, Leknessund A, Wikman M, Ø R. The antimicrobial peptide, Lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int J Cancer. 2006;119(3):493–500. doi:10.1002/ijc.21886
  • Yerly VC, Jorge RG, Yadi UAP, et al. Antibacterial synthetic peptides derived from bovine lactoferricin exhibit cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines. Molecules. 2017;22(10):1.
  • Suttmann H, Retz M, Paulsen F, Harder J, Lehmann J. Antimicrobial peptides of the cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol. 2008;8(1):5. doi:10.1186/1471-2490-8-5
  • Cerón JM, Contreras-Moreno J, Puertollano E, Gád C, Puertollano MA, Pablo MAD. The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells. Peptides. 2010;31(8):0–1503. doi:10.1016/j.peptides.2010.05.008
  • Liu S, Yang H, Wan L, Cai HW, Lu XF. Enhancement of cytotoxicity of antimicrobial peptide magainin II in tumor cells by bombesin-targeted delivery. Acta Pharmacol Sin. 2011;32(1):79–88. doi:10.1038/aps.2010.162
  • Liu S, Yang H, Wan L, Cheng J, Lu X. Penetratin-mediated delivery enhances the antitumor activity of the cationic antimicrobial peptide magainin II. Cancer Biother Radiopharm. 2013;28(4):289–297. doi:10.1089/cbr.2012.1328
  • Bepler G, Carney DN, Nau MM, Gazdar AF, Minna JD. Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res. 1992;52(13):3534–3538.
  • Kim R, Emi M, Tanabe K. Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol. 2006;57(5):545–553. doi:10.1007/s00280-005-0111-7
  • Gauldie J, Hanson JM, Shipolini RA, Vernon CA. The structures of some peptides from bee venom. FEBS J. 2008;83(2):405–410.
  • Sui SF, Wu H, Guo Y, Chen KS. Conformational changes of melittin upon insertion into phospholipid monolayer and vesicle. J Biochem. 1994;116(3):482. doi:10.1093/oxfordjournals.jbchem.a124550
  • Risso A, Braidot E, Sordano MC, et al. BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol Cell Biol. 2002;22(6):1926–1935. doi:10.1128/mcb.22.6.1926-1935.2002
  • Skerlavaj B, Gennaro R, Bagella L, Merluzzi L, Risso A, Zanetti M. Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J Biol Chem. 1996;271(45):28375–28381. doi:10.1074/jbc.271.45.28375
  • Ren SX, Jin S, Cheng ASL, et al. FK-16 derived from the anticancer peptide LL-37 induces caspase-independent apoptosis and autophagic cell death in colon cancer cells. PLoS One. 2013;8:1.
  • Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. 2004;75(1):39–48. doi:10.1189/jlb.0403147
  • Xu N, Yuan HY, Wang FL, Liao XY, Chang YP. Effect of hCAP-18/LL-37 gene transfection on proliferation and apoptosis of Lewis cells. J Jilin Univ Med Ed. 2009;35(6):1040–1043.
  • Zoggel HV, Carpentier G, Santos CD, et al. Antitumor and angiostatic activities of the antimicrobial peptide dermaseptin B2. PLoS One. 2012;7(9):1.
  • Dong Z, Hu H, Yu X, et al. Novel frog skin-derived peptide dermaseptin-PP for lung cancer treatment: in vitro/vivo evaluation and anti-tumor mechanisms study. Front Chem. 2020;8:476. doi:10.3389/fchem.2020.00476
  • Che W, Li-Li T, Song L, et al. Rapid cytotoxicity of antimicrobial peptide tempoprin-1CEa in breast cancer cells through membrane destruction and intracellular calcium mechanism. PLoS One. 2013;8(4):e60462. doi:10.1371/journal.pone.0060062
  • Wang C, Zhou Y, Li S, et al. Anticancer mechanisms of temporin-1CEa, an amphipathic α-helical antimicrobial peptide, in Bcap-37 human breast cancer cells. Life Sci. 2013;92(20–21):1004–1014. doi:10.1016/j.lfs.2013.03.016
  • Wang C, Chen YW, Zhang L, et al. Melanoma cell surface-expressed phosphatidylserine as a therapeutic target for cationic anticancer peptide, temporin-1CEa. J Drug Target. 2016;24(6):548–556.
  • Ouyang GL, Li QF, Peng XX, Liu QR, Hong SG. Effects of tachyplesin on proliferation and differentiation of human hepatocellular carcinoma SMMC-7721 cells. World J Gastroenterol. 2002;8(6):1053–1058. doi:10.3748/wjg.v8.i6.1053
  • Chen Y, Xu X, Hong S, Chen J, Zhang L. RGD-tachyplesin inhibits tumor growth. Cancer Res. 2001;61(6):2434–2438.
  • Hilchie AL, Doucette CD, Pinto DM, Patrzykat A, Douglas S, Hoskin DW. Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Res. 2011;13(5):1–16. doi:10.1186/bcr3043
  • Kim S, Kim SS, Bang YJ, Kim SJ, Lee BJ. In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines. Peptides. 2003;24(7):945–953. doi:10.1016/S0196-9781(03)00194-3
  • Jing H. Effects of Antimicrobial Peptides Temporin-1CEa on Multidrug Resistance of MCF-7/Adr Cells. Liaoning Normal University; 2016. Chinese.
  • To KKW, Ren SX, Wong CCM, Cho CH. Reversal of ABCG2-mediated multidrug resistance by human cathelicidin and its analogs in cancer cells. Peptides. 2013;40:13–21. doi:10.1016/j.peptides.2012.12.019
  • Shan GUO, Rui-jun ZHAO, Jing-xia C. Effect of antimicrobial peptides on proliferation and multidrug resistance in multidrug resistant human hepatocellular carcinoma Bel-7402/ADM cells. Journal Article. Chin J Public Health. 2019;35(01):48–52. Chinese.
  • Hui L, Leung K, Chen HM. The combined effects of antibacterial peptide cecropin A and anti-cancer agents on leukemia cells. Anticancer Res. 2002;22(5):2811–2816.
  • Do N, Weindl G, Grohmann L, et al. Cationic membrane-active peptides - anticancer and antifungal activity as well as penetration into human skin. Exp Dermatol. 2014;23(5):326–331. doi:10.1111/exd.12384
  • Xia L, Zhang F. Effect of Cecropin-XJ and it’ s combination with chemotherapeutic agents on the proliferation and apoptosis of human esophageal cancer Eca109 cells. Chin J Cancer Biother. 2014;21(4):402–407.
  • Francesca M, Marina G, Elena R. Conjugation of photosensitisers to antimicrobial peptides increases the efficiency of photodynamic therapy in cancer cells. Photochem Photobiol Sci. 2015;2015:1.
  • Wang X, Donghui LI. Effect of APBMV on large intestine cancer LoVo cells and its synergetic effect with chemotherapy drugs. Qianw J Med. 2003;2003:1.
  • Wang X, Donghui LI, Gao C. Antitumor effect of ant icancer polypeptide from buthus martensii venom: experiment in vivo. Qianw J Med. 2003;2003:1.
  • Zhang B, Shi W, Li J, et al. Synthesis and biological evaluation of novel peptides based on antimicrobial peptides as potential agents with antitumor and multidrug resistance‐reversing activities. Chem Biol Drug Des. 2017;2017:1.
  • Johnstone S, Gelmon K, Mayer LD, Hancock RE, Bally MB. In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and P-glycoprotein over-expressing tumor cell lines. Anticancer Drug Des. 2000;15(2):151–160.
  • Winder D, Günzburg WH, Erfle V, Salmons B. Expression of antimicrobial peptides has an antitumour effect in human cells. Biochem Biophys Res Commun. 1998;242(3):0–612. doi:10.1006/bbrc.1997.8014
  • Ling C-Q, Li B, Zhang C. Inhibitory effect of recombinant adenovirus carrying melittin gene on hepatocellular carcinoma. Ann Oncol. 2005;16(1):109–115. doi:10.1093/annonc/mdi019
  • Xu B, Dong CY, Zhang F, Lin YM, Wu KF, Ma XT. Synergistic antileukemia effect of combinational gene therapy using murine b-defensin 2 and IL-18 in L1210 murine leukemia model. Gene Ther. 2007;14(15):1181–1187. doi:10.1038/sj.gt.3302966
  • Zou M, Zhang L, Xie Y, Xu W. NGR-based strategies for targeting delivery of chemotherapeutics to tumor vasculature. Anticancer Agents Med Chem. 2012;12(3):1.
  • Chakravarty R, Chakraborty S, Dash A. Molecular imaging of breast cancer: role of RGD peptides. Mini Rev Med Chem. 2015;15(13):1073–1094. doi:10.2174/1389557515666150909144606
  • Me M, Myrberg H, El-Andaloussi S, l L. Design of a tumor homing cell-penetrating peptide for drug delivery. Int J Pept Res Ther. 2009;15(1):11–15. doi:10.1007/s10989-008-9156-x
  • Ma XY, Shu L, Luo DF, Liu RH, Ling X. Antitumor and antimetastatic effect of antimicrobial peptide conjugated with tumor homing peptide TMTP1 on the transplanted prostate cancer and gastric cancer in nude mice. Zhonghua Zhong Liu Za Zhi. 2013;35(10):737–741.
  • Liu S, Yang H, Cai H, Wan L, Lu X. Enhancement of cytotoxicity of cantionic antimicrobial peptide in tumor cells by conjugation to cell-penetrating peptide. J Biomed Eng. 2011;28(1):110.
  • Jing H, Cuixia C, Shengzhong Z, et al. Designed antimicrobial and antitumor peptides with high selectivity. Biomacromolecules. 2011;12(11):3839–3843. doi:10.1021/bm201098j
  • Urban P, Jose Valle-Delgado J, Moles E, Marques J, Diez C, Fernandez-Busquets X. Nanotools for the delivery of antimicrobial peptides. Curr Drug Targets. 2012;13(9):1158–1172. doi:10.2174/138945012802002302
  • Strand A. Values in nanomedical research: a discussion based on the NANOCAN project on nanoparticles in cancer therapy and diagnosis. Nanoethics. 2017;11(3):259–271. doi:10.1007/s11569-017-0295-4
  • Becker C, Bopp T, Jonuleit H. Treg cells as potential cellular targets for functionalized nanoparticles in cancer therapy. Nanomedicine. 2016;11(20):2699–2709. doi:10.2217/nnm-2016-0197
  • Swenson S, Costa F, Minea R, et al. Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression. Mol Cancer Ther. 2004;3(4):499–511. doi:10.1158/1535-7163.499.3.4
  • Tian W, Li B, Zhang X, Dang W, Chen T. Suppression of tumor invasion and migration in breast cancer cells following delivery of siRNA against Stat3 with the antimicrobial peptide PR39. Oncol Rep. 2012;28(4):1362–1368. doi:10.3892/or.2012.1911
  • Ines N. Antimicrobial and cell-penetrating peptides: how to understand two distinct functions despite similar physicochemical properties. Adv Exp Med Biol. 2019;1117:93–109. doi:10.1007/978-981-13-3588-4_7
  • Splith K, Neundorf I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J. 2011;40(4):387–397. doi:10.1007/s00249-011-0682-7
  • Liu CY, Xiao YZ, Li RS, Li XR, Yuan HL. Preparation and in vitro evaluation of antibacterial peptides from Plutella xylostella poly(lactic-co-glycolic acid) nanoparticles. Chin Traditional Herbal Drugs. 2015;46(3):348–352.
  • Soman NR, Baldwin SL, Hu G, et al. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest. 2009;119(9):2830–2842. doi:10.1172/JCI38842
  • Badr G, Al-Sadoon MK, El-Toni AM, Daghestani M. Walterinnesia aegyptia venom combined with silica nanoparticles enhances the functioning of normal lymphocytes through PI3K/AKT, NFκB and ERK signaling. Lipids Health Dis. 2012;11:1.
  • Badr G, Al-Sadoon MK, Rabah DM, Sayed D. Snake (Walterinnesia aegyptia) venom-loaded silica nanoparticles induce apoptosis and growth arrest in human prostate cancer cells. Apoptosis. 2012;18(3):1.
  • Al-Sadoon MK, Rabah DM, Badr G. Enhanced anticancer efficacy of snake venom combined with silica nanoparticles in a murine model of human multiple myeloma: molecular targets for cell cycle arrest and apoptosis induction. Cell Immunol. 2013;284(1–2):129–138. doi:10.1016/j.cellimm.2013.07.016
  • Tan H, Huang Y, Xu J, et al. Spider toxin peptide lycosin-I functionalized gold nanoparticles for in vivo tumor targeting and therapy. Toxicon. 2019:158. doi:10.1016/j.toxicon.2019.07.005
  • Di WU, Zhao Y, Ren HD, Xin-Hong SI, Zhang L, Wang C. Construction of cationic anticancer peptide temporin-1CEa liposomes and evaluation of anti-breast cancer activity in vitro. Chin J Biochem Pharmaceutics. 2016;6 :22–26.
  • Wang C, Dong S, Zhang L, et al. Cell surface binding, uptaking and anticancer activity of L-K6, a lysine/leucine-rich peptide, on human breast cancer MCF-7 cells. Entific Rep. 2017;7(1):8293.
  • Chen Y-W. Preparation, Characterization and Anti-Cancer Activity Evaluation of L-K6 Antimicrobial Peptide-Liposomal Drug System. Liaoning Normal University; 2016. Chinese.
  • Huang C, Jin H, Qian Y, et al. Hybrid melittin cytolytic peptide-driven ultrasmall lipid nanoparticles block melanoma growth in vivo. ACS Nano. 2013;7(7):5791–5800. doi:10.1021/nn400683s
  • Yamada Y, Shinohara Y, Kakudo T, et al. Mitochondrial delivery of mastoparan with transferrin liposomes equipped with a pH-sensitive fusogenic peptide for selective cancer therapy. Int J Pharm. 2005;303(1–2):1–7. doi:10.1016/j.ijpharm.2005.06.009
  • Tseng Y-L, Liu -J-J, Hong R-L. Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study. Mol Pharmacol. 2002;62(4):864. doi:10.1124/mol.62.4.864
  • Sharma G, Modgil A, Zhong T, Sun C, Singh J. Influence of short-chain cell-penetrating peptides on transport of doxorubicin encapsulating receptor-targeted liposomes across brain endothelial barrier. Pharm Res. 2014;31(5):1194–1209. doi:10.1007/s11095-013-1242-x
  • Henriques S, Melo M, Castanho M. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J. 2006;399(1):1–7. doi:10.1042/BJ20061100
  • Hu C, Chen X, Zhao W, Chen Y, Huang Y. Design and modification of anticancer peptides. Drug Des. 2016;5(3):1–10. doi:10.4172/2169-0138.1000138
  • Giangaspero A, Sandri L, Tossi A. Amphipathic, α‐helical antimicrobial peptides. Pept Sci. 2015;55(21):4–30.
  • Diao Y, Han W, Zhao H, et al. Designed synthetic analogs of the alpha-helical peptide temporin-La with improved antitumor efficacies via charge modification and incorporation of the integrin alphavbeta3 homing domain. J Pept Sci. 2012;18(7):476–486. doi:10.1002/psc.2420
  • Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett. 2001;501(2–3):146–150. doi:10.1016/S0014-5793(01)02648-5
  • Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother. 2007;51(4):1398–1406.
  • Huang Y, Huang J, Chen Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein and Cell. 2010;1(2):143–152. doi:10.1007/s13238-010-0004-3
  • Ganz T. The role of antimicrobial peptides in innate immunity. Integr Comp Biol. 2003;43(2):300–304. doi:10.1093/icb/43.2.300
  • Ma XT, Xu B, An LL, Dong CY, Wu KF. Vaccine with beta-defensin 2-transduced leukemic cells activates innate and adaptive immunity to elicit potent antileukemia responses. Cancer Res. 2006;66(2):1169. doi:10.1158/0008-5472.CAN-05-2891
  • Zhang X, Jin L, Wang Z, Wang Q. Fusion expression of antimicrobial peptides in Escherichia coli. Chin J Biotechnol. 2014;30(8):1172.
  • Fanhong K, Weixia Z, Yong C, Hongfa W. Advanced on Pichia pastoris expression of antimicrobial peptides. J Pathogen Biol. 2009;4(9):700–702.