170
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Utilization of Nitrogen-Doped Graphene Quantum Dots to Neutralize ROS and Modulate Intracellular Antioxidant Pathways to Improve Dry Eye Disease Therapy

, , , , , , , , & ORCID Icon show all
Pages 2691-2708 | Received 11 Dec 2023, Accepted 26 Feb 2024, Published online: 14 Mar 2024

References

  • Tavakoli A, Flanagan JL. Dry eye disease: an (in)convenient truth. Clin Exp Optom. 2022;105(2):222–229. doi:10.1080/08164622.2021.1945410
  • Louie HH, Mugisho OO, Chamley LW, Rupenthal ID. Extracellular vesicles as biomarkers and therapeutics for inflammatory eye diseases. Mol Pharm. 2023;20(1):23–40. doi:10.1021/acs.molpharmaceut.2c00414
  • Huang L, Gao H, Wang Z, Zhong Y, Hao L, Du Z. Combination nanotherapeutics for dry eye disease treatment in a rabbit model. Int J Nanomed. 2021;16:3613–3631. doi:10.2147/IJN.S301717
  • Lu YT, Wu YQ, Zhou XJ, et al. Editorial: advances in the pathophysiology, diagnosis, and treatment of dry eye disease. Front Med-Lausanne. 2022;9:1 doi:10.3389/fmed.2022.925876.
  • Lou Q, Pan L, Xiang S, et al. Suppression of NLRP3/Caspase-1/GSDMD mediated corneal epithelium pyroptosis using melatonin-loaded liposomes to inhibit benzalkonium chloride-induced dry eye disease. Int J Nanomed. 2023;18:2447–2463. doi:10.2147/IJN.S403337
  • Luo L-J, Jian H-J, Harroun SG, Lai J-Y, Unnikrishnan B, Huang C-C. Targeting nanocomposites with anti-oxidative/inflammatory/angiogenic activities for synergistically alleviating macular degeneration. Appl Mater Today. 2021;24:1 doi:10.1016/j.apmt.2021.101156.
  • Tzong-Yun G, Tzong-Yun G, Tzong-Yun G, Lai J-Y. Biofunctionalization of nanoceria with sperminated hyaluronan enhances drug delivery performance for corneal alkali burn therapy. Chem Eng J. 2023;476:146864. doi:10.1016/j.cej.2023.146864
  • Yang C-J, Anand A, Huang C-C, Lai J-Y. Unveiling the power of gabapentin-loaded nanoceria with multiple therapeutic capabilities for the treatment of dry eye disease. ACS Nano. 2023;17(24):25118–25135. doi:10.1021/acsnano.3c07817
  • Wu DD, Lim BXH, Seah I, et al. Impact of microplastics on the ocular surface. Int J Mat Sci. 2023;24:1 doi:10.3390/ijms24043928.
  • Jung SJ, Mehta JS, Tong L. Effects of environment pollution on the ocular surface. Ocul Surf. 2018;16(2):198–205. doi:10.1016/j.jtos.2018.03.001
  • Li S, Lu Z, Huang Y, et al. Anti-oxidative and anti-inflammatory micelles: break the dry eye vicious cycle. Adv Sci (Weinh). 2022;9(17):e2200435. doi:10.1002/advs.202200435
  • Le Gal K, Schmidt EE, Sayin VI. Cellular redox homeostasis. Antioxidants. 2021;11(1):10. doi:10.3390/antiox11010010
  • Yang CJ, Nguyen DD, Lai JY. Poly(l-histidine)-mediated on-demand therapeutic delivery of roughened ceria nanocages for treatment of chemical eye injury. Adv Sci. 2023;10(26):e2302174. doi:10.1002/advs.202302174
  • Lin PH, Jian HJ, Li YJ, et al. Alleviation of dry eye syndrome with one dose of antioxidant, anti-inflammatory, and mucoadhesive lysine-carbonized nanogels. Acta Biomater. 2022;141:140–150. doi:10.1016/j.actbio.2022.01.044
  • Lim JC, Suzuki-Kerr H, Nguyen TX. Redox homeostasis in ocular tissues: circadian regulation of glutathione in the lens? Antioxidants. 2022;12(1):11. doi:10.3390/antiox12010011
  • Nguyen DD, Luo LJ, Yang CJ, Lai JY. Highly retina-permeating and long-acting resveratrol/metformin nanotherapeutics for enhanced treatment of macular degeneration. ACS Nano. 2023;17(1):168–183. doi:10.1021/acsnano.2c05824
  • Awwad S, Ahmed AHAM, Sharma G, et al. Principles of pharmacology in the eye. Brit J Pharmacol. 2017;174(23):4205–4223. doi:10.1111/bph.14024
  • Li YJ, Luo LJ, Harroun SG, et al. Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale. 2019;11(12):5580–5594. doi:10.1039/C9NR00376B
  • Luo LJ, Nguyen DD, Lai JY. Long-acting mucoadhesive thermogels for improving topical treatments of dry eye disease. Mater Sci Eng C Mater Biol Appl. 2020;115:111095. doi:10.1016/j.msec.2020.111095
  • Nguyen DD, Luo LJ, Lai JY. Thermogels containing sulfated hyaluronan as novel topical therapeutics for treatment of ocular surface inflammation. Mater Today Bio. 2022;13:100183. doi:10.1016/j.mtbio.2021.100183
  • Seen S, Tong L. Dry eye disease and oxidative stress. Acta Ophthalmol. 2018;96(4):E412–E420. doi:10.1111/aos.13526
  • Wu Z, Pan T, Lin D, et al. Biocompatible tumor-targeted GQDs nanocatalyst for chemodynamic tumor therapy. J Mater Chem B. 2022;10(18):3567–3576. doi:10.1039/D1TB02734D
  • Jian H-J, Ren-Siang W, Lin T-Y, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS nano. 2017;11(7):6703–6716. doi:10.1021/acsnano.7b01023
  • Lin H-Y, Wang S-W, Mao J-Y, et al. Carbonized nanogels for simultaneous antibacterial and antioxidant treatment of bacterial keratitis. Chem Eng J. 2021;411:1 doi:10.1016/j.cej.2021.128469.
  • Dehvari K, Chiu SH, Lin JS, Girma WM, Ling YC, Chang JY. Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy. Acta Biomater. 2020;114:343–357. doi:10.1016/j.actbio.2020.07.022
  • Zhao L, Wang YM, Li Y. Antioxidant activity of graphene quantum dots prepared in different electrolyte environments. Nanomaterials-Basel. 2019;9:1 doi:10.3390/nano9121708.
  • Ruiz V, Yate L, Garcia I, Cabanero G, Grande HJ. Tuning the antioxidant activity of graphene quantum dots: protective nanomaterials against dye decoloration. Carbon. 2017;116:366–374. doi:10.1016/j.carbon.2017.01.090
  • Choudhary P, Biswas S, Kandoth N, et al. Graphene quantum dots alleviate ROS-mediated gastric damage. iScience. 2022;25(4):104062. doi:10.1016/j.isci.2022.104062
  • Wang HB, Zhang ML, Ma YR, et al. Carbon dots derived from citric acid and glutathione as a highly efficient intracellular reactive oxygen species scavenger for alleviating the lipopolysaccharide-induced inflammation in macrophages. Acs Appl Mater Inter. 2020;12(37):41088–41095. doi:10.1021/acsami.0c11735
  • Ho TC, Yeh SI, Chen SL, Tsao YP. Integrin alphav and vitronectin prime macrophage-related inflammation and contribute the development of dry eye disease. Int J Mol Sci. 2021;23(1):22. doi:10.3390/ijms23010022
  • Chen L, Deng J, Ailing Y, et al. Drug-peptide supramolecular hydrogel boosting transcorneal permeability and pharmacological activity via ligand-receptor interaction. Bioact Mater. 2022;10:420–429. doi:10.1016/j.bioactmat.2021.09.006
  • Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984;309(5963):30–33. doi:10.1038/309030a0
  • Ensign LM, Tang BC, Wang YY, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4:1 doi:10.1126/scitranslmed.3003453.
  • Mert O, Lai SK, Ensign L, et al. A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles. J Control Release. 2012;157(3):455–460. doi:10.1016/j.jconrel.2011.08.032
  • Yu MR, Xu L, Tian FL, et al. Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers. Nat Commun. 2018;9:1 doi:10.1038/s41467-018-05061-3.
  • Li L, Li SH, Wang S, et al. Antioxidant and anti-glycated TAT-modified platinum nanoclusters as eye drops for non-invasive and painless relief of diabetic cataract in rats. Chem Eng J. 2020;398:1 doi:10.1016/j.cej.2020.125436.
  • Qi L, Th P, Ll O, et al. Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage. Commun Biol. 2021;4(1):4. doi:10.1038/s42003-020-01536-6
  • Liu XF, Hao JL, Xie T, et al. Nrf2 as a target for prevention of age-related and diabetic cataracts by against oxidative stress. Aging Cell. 2017;16(5):934–942. doi:10.1111/acel.12645
  • Ayu Y, Zm L, Gt C, Sd H, Hs Y. Bamboo leaf flavonoids extracts alleviate oxidative stress in HepG2 cells via naturally modulating reactive oxygen species production and Nrf2-mediated antioxidant defense responses. J Food Sci. 2019;84(6):1609–1620. doi:10.1111/1750-3841.14609