224
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Nanoplatform-Mediated Autophagy Regulation and Combined Anti-Tumor Therapy for Resistant Tumors

, , & ORCID Icon
Pages 917-944 | Received 22 Oct 2023, Accepted 04 Jan 2024, Published online: 26 Jan 2024

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. Ca A Cancer J Clinicians. 2020;70(1):7–30. doi:10.3322/caac.21590
  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Dembic Z. Antitumor Drugs and Their Targets. Molecules. 2020;25(23):5776. doi:10.3390/molecules25235776
  • Sun J, Wei Q, Zhou Y, Wang J, Liu Q, Xu H. A systematic analysis of FDA-approved anticancer drugs. BMC Syst. Biol. 2017;11(Suppl 5):87. doi:10.1186/s12918-017-0464-7
  • Sato R, Semba T, Saya H, Arima Y. Concise Review: stem Cells and Epithelial-Mesenchymal Transition in Cancer: biological Implications and Therapeutic Targets. Stem Cells (Dayton, Ohio). 2016;34(8):1997–2007. doi:10.1002/stem.2406
  • Zhang Y, Sun M, Huang G, et al. Maintenance of antiangiogenic and antitumor effects by orally active low-dose capecitabine for long-term cancer therapy. Proc Natl Acad Sci USA. 2017;114(26):E5226–E5235. doi:10.1073/pnas.1705066114
  • Fairchild A, Tirumani SH, Rosenthal MH, et al. Hormonal therapy in oncology: a primer for the radiologist. AJR. 2015;204(6):W620–W630 . doi:10.2214/AJR.14.13604
  • Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Immunology. 2010;10(5):345–352.
  • Dobosz P, Dzieciątkowski T. The Intriguing History of Cancer Immunotherapy. Front Immunol. 2019;10:2965.
  • Duong MT, Qin Y, You SH, Min JJ. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp. Mol. Med. 2019;51(12):1–15. doi:10.1038/s12276-019-0297-0
  • Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell. 2018;33(4):570–580. doi:10.1016/j.ccell.2018.03.015
  • Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Cancer. 2003;3(5):380–387. doi:10.1038/nrc1071
  • Nguyen PL, Gu X, Lipsitz SR, et al. Cost implications of the rapid adoption of newer technologies for treating prostate cancer. J Clin Oncol. 2011;29(12):1517–1524. doi:10.1200/JCO.2010.31.1217
  • Mignani S, Bryszewska M, Klajnert-Maculewicz B, Zablocka M, Majoral JP. Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules. 2015;16(1):1–27. doi:10.1021/bm501285t
  • Hu CM, Zhang L. Nanoparticle- based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012;83(8):1104–1111. doi:10.1016/j.bcp.2012.01.008
  • Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-Mediated Combination Therapy: two-in-One Approach for Cancer. Int J Mol Sci. 2018;19(10):3264. doi:10.3390/ijms19103264
  • Assaraf YG, Brozovic A, Gonçalves AC, et al. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat. 2019;46:100645. doi:10.1016/j.drup.2019.100645
  • Jin S, White E. Role of autophagy in cancer: management of metabolic stress. Autophagy. 2007;3(1):28–31. doi:10.4161/auto.3269
  • Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy. 2010;6(3):322–329. doi:10.4161/auto.6.3.11625
  • Zhang Y, Sha R, Zhang L, et al. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nat Commun. 2018;9(1):4236. doi:10.1038/s41467-018-06529-y
  • Ge Y, Ma Y, Li L. The application of prodrug-based nano -drug delivery strategy in cancer combination therapy. Colloids Surf B Biointerfaces. 2016;146:482–489. doi:10.1016/j.colsurfb.2016.06.051
  • Olov N, Bagheri-Khoulenjani S, Mirzadeh H. Combinational drug delivery using nanocarriers for breast cancer treatments: a review. J Biomed Mater Res A. 2018;106(8):2272–2283. doi:10.1002/jbm.a.36410
  • Kankala RK, Liu CG, Chen AZ, et al. Overcoming Multidrug Resistance through the Synergistic Effects of Hierarchical pH-Sensitive, ROS-Generating Nanoreactors. ACS Biomater. Sci. Eng. 2017;3(10):2431–2442. doi:10.1021/acsbiomaterials.7b00569
  • Kankala K, Liu C-G, Yang D-Y, et al. Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance [J]. Chem Eng J. 2020;383:123138. doi:10.1016/j.cej.2019.123138
  • Duan C, Yu M, Xu J, Li BY, Zhao Y, Kankala RK. Overcoming Cancer Multi-drug Resistance (MDR): reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed Pharmacother. 2023;162:114643. doi:10.1016/j.biopha.2023.114643
  • Li T, Li J, Chen Z, et al. Glioma diagnosis and therapy: current challenges and nanomaterial-based solutions. J Controlled Release. 2022;352:338–370. doi:10.1016/j.jconrel.2022.09.065
  • Liu CG, Han YH, Kankala RK, Wang SB, Chen AZ. Subcellular Performance of Nanoparticles in Cancer Therapy. Int j Nanomed. 2020;15:675–704. doi:10.2147/IJN.S226186
  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History of Nanoscience and Nanotechnology: from Chemical-Physical Applications to Nanomedicine. Molecules. 2019;25(1):112. doi:10.3390/molecules25010112
  • Ashrafizadeh M, Zhang W, Zou R, Sethi G, Klionsky DJ, Zhang X. A bioinformatics analysis, pre-clinical and clinical conception of autophagy in pancreatic cancer: complexity and simplicity in crosstalk. Pharmacol Res. 2023;194:106822. doi:10.1016/j.phrs.2023.106822
  • Pietrocola F, Bravo-San Pedro JM, Galluzzi L, Kroemer G. Autophagy in natural and therapy-driven anticancer immunosurveillance. Autophagy. 2017;13(12):2163–2170. doi:10.1080/15548627.2017.1310356
  • Wang C, Hu Q, Shen HM. Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacol Res. 2016;105:164–175. doi:10.1016/j.phrs.2016.01.028
  • Zhang SF, Wang XY, Fu ZQ, et al. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer. Autophagy. 2015;11(2):225–238. doi:10.1080/15548627.2014.998931
  • Niu J, Yan T, Guo W, et al. The COPS3-FOXO3 positive feedback loop regulates autophagy to promote cisplatin resistance in osteosarcoma. Autophagy. 2023;19(6):1693–1710. doi:10.1080/15548627.2022.2150003
  • Zheng Y, Wu J, Chen H, et al. KLF4 targets RAB26 and decreases 5-FU resistance through inhibiting autophagy in colon cancer. Cancer Biol Ther. 2023;24(1):2226353. doi:10.1080/15384047.2023.2226353
  • Chittaranjan S, Bortnik S, Dragowska WH, et al. Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer. Clin Cancer Res. 2014;20(12):3159–3173. doi:10.1158/1078-0432.CCR-13-2060
  • Yamamoto K, Venida A, Yano J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581(7806):100–105. doi:10.1038/s41586-020-2229-5
  • Lotsberg ML, Wnuk-Lipinska K, Terry S, et al. AXL Targeting Abrogates Autophagic Flux and Induces Immunogenic Cell Death in Drug-Resistant Cancer Cells. J Thorac Oncol. 2020;15(6):973–999. doi:10.1016/j.jtho.2020.01.015
  • Yu Z, Tang H, Chen S, et al. Exosomal LOC85009 inhibits docetaxel resistance in lung adenocarcinoma through regulating ATG5-induced autophagy. Drug Resist Updat. 2023;67:100915. doi:10.1016/j.drup.2022.100915
  • Han M, Hu J, Lu P, et al. Exosome-transmitted reverses trastuzumab resistance by inhibiting ATG5 in breast cancer. Cell Death Dis. 2020;11(1):43. doi:10.1038/s41419-020-2250-5
  • Pai Bellare G, Saha B, Patro BS. Targeting autophagy reverses de novo resistance in homologous recombination repair proficient breast cancers to PARP inhibition. Br J Cancer. 2021;124(7):1260–1274. doi:10.1038/s41416-020-01238-0
  • Xu WP, Liu JP, Feng JF, et al. miR-541 potentiates the response of human hepatocellular carcinoma to sorafenib treatment by inhibiting autophagy. Gut. 2020;69(7):1309–1321. doi:10.1136/gutjnl-2019-318830
  • Zahedi S, Fitzwalter BE, Morin A, et al. Effect of early-stage autophagy inhibition in BRAFV600E autophagy -dependent brain tumor cells. Cell Death Dis. 2019;10(9):679. doi:10.1038/s41419-019-1880-y
  • Bi J, Zhang Y, Malmrose PK, et al. Blocking autophagy overcomes resistance to dual histone deacetylase and proteasome inhibition in gynecologic cancer. Cell Death Dis. 2022;13(1):59. doi:10.1038/s41419-022-04508-2
  • Xu Q, Zhang H, Liu H, Han Y, Qiu W, Li Z. Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma. Biomaterials. 2022;280:121287. doi:10.1016/j.biomaterials.2021.121287
  • Liang B, Kong D, Liu Y, et al. Autophagy inhibition plays the synergetic killing roles with radiation in the multi-drug resistant SKVCR ovarian cancer cells. Radiat Oncol. 2012;7:213. doi:10.1186/1748-717X-7-213
  • Li Y, Cook KL, Yu W, et al. Inhibition of Antiestrogen-Promoted Pro-Survival Autophagy and Tamoxifen Resistance in Breast Cancer through Vitamin D Receptor. Nutrients. 2021;13(5):1715. doi:10.3390/nu13051715
  • Nguyen HG, Yang JC, Kung HJ, et al. Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene. 2014;33(36):4521–4530. doi:10.1038/onc.2014.25
  • Jiang L, Xu L, Xie J, et al. Inhibition of autophagy overcomes glucocorticoid resistance in lymphoid malignant cells. Cancer Biol Ther. 2015;16(3):466–476. doi:10.1080/15384047.2015.1016658
  • Wei MF, Chen MW, Chen KC, et al. Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy. 2014;10(7):1179–1192. doi:10.4161/auto.28679
  • Zanotto-Filho A, Braganhol E, Klafke K, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358(2):220–231. doi:10.1016/j.canlet.2014.12.044
  • Zeng T, Xu M, Zhang W, et al. Autophagy inhibition and microRNA‑199a‑5p upregulation in paclitaxel‑resistant A549/T lung cancer cells. Oncol Rep. 2021;46(1):149. doi:10.3892/or.2021.8100
  • Li H, Chen L, Li JJ, et al. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J Hematol Oncol. 2018;11(1):70. doi:10.1186/s13045-018-0618-0
  • Xu W, Wei Q, Han M, et al. CCL2-SQSTM1 positive feedback loop suppresses autophagy to promote chemoresistance in gastric cancer. Int J Biol Sci. 2018;14(9):1054–1066. doi:10.7150/ijbs.25349
  • Zitkute V, Kukcinaviciute E, Jonusiene V, Starkuviene V, Sasnauskiene A. Differential effects of 5-fluorouracil and oxaliplatin on autophagy in chemoresistant colorectal cancer cells. J Cell Biochem. 2022;123(6):1103–1115. doi:10.1002/jcb.30267
  • Chen Y, Jia Y, Mao M, et al. PLAC8 promotes Adriamycin resistance via blocking autophagy in breast cancer. J Cell Mol Med. 2021;25(14):6948–6962. doi:10.1111/jcmm.16706
  • Li ZL, Zhang HL, Huang Y, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11(1):3806. doi:10.1038/s41467-020-17395-y
  • Mele L, la Noce M, Paino F, et al. Glucose-6-phosphate dehydrogenase blockade potentiates tyrosine kinase inhibitor effect on breast cancer cells through autophagy perturbation. J Exp Clin Cancer Res. 2019;38(1):160. doi:10.1186/s13046-019-1164-5
  • Wu FQ, Fang T, Yu LX, et al. ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1α. J Hepatol. 2016;65(2):314–324. doi:10.1016/j.jhep.2016.04.019
  • Ning L, Guo-Chun Z, Sheng-Li A, et al. Inhibition of autophagy induced by PTEN loss promotes intrinsic breast cancer resistance to trastuzumab therapy. Tumour Biol. 2016;37(4):5445–5454. doi:10.1007/s13277-015-4392-0
  • Yang Y, Li Y, Yang Q, et al. FAT4 activation inhibits epithelial-mesenchymal transition (EMT) by promoting autophagy in H2228/Cer cells. Med Oncol. 2022;40(1):64. doi:10.1007/s12032-022-01934-2
  • Thorburn J, Staskiewicz L, Goodall ML, et al. Non- cell-autonomous Effects of Autophagy Inhibition in Tumor Cells Promote Growth of Drug-resistant Cells. Mol Pharmacol. 2017;91(1):58–64. doi:10.1124/mol.116.106070
  • He C, Dong X, Zhai B, et al. MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget. 2015;6(30):28867–28881. doi:10.18632/oncotarget.4814
  • Zhai B, Hu F, Jiang X, et al. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol Cancer Ther. 2014;13(6):1589–1598. doi:10.1158/1535-7163.MCT-13-1043
  • Xu J, Su Y, Xu A, et al. miR-221/222-Mediated Inhibition of Autophagy Promotes Dexamethasone Resistance in Multiple Myeloma. Mol Ther. 2019;27(3):559–570. doi:10.1016/j.ymthe.2019.01.012
  • Kaverina NV, Kadagidze ZG, Borovjagin AV, et al. Tamoxifen overrides autophagy inhibition in Beclin-1-deficient glioma cells and their resistance to adenovirus-mediated oncolysis via upregulation of PUMA and BAX. Oncogene. 2018;37(46):6069–6082. doi:10.1038/s41388-018-0395-9
  • Qu YQ, Song LL, Xu SW, et al. Pomiferin targets SERCA, mTOR, and P-gp to induce autophagic cell death in apoptosis-resistant cancer cells, and reverses the MDR phenotype in cisplatin-resistant tumors in vivo. Pharmacol Res. 2023;191:106769. doi:10.1016/j.phrs.2023.106769
  • Yan J, Dou X, Zhou J, et al. Tubeimoside-I sensitizes colorectal cancer cells to chemotherapy by inducing ROS-mediated impaired autophagolysosomes accumulation. J Exp Clin Cancer Res. 2019;38(1):353. doi:10.1186/s13046-019-1355-0
  • Di Maio M, Chiodini P, Georgoulias V, et al. Meta-analysis of single-agent chemotherapy compared with combination chemotherapy as second-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2009;27(11):1836–1843. doi:10.1200/JCO.2008.17.5844
  • Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives. J Control Release. 2016;240:489–503. doi:10.1016/j.jconrel.2016.06.012
  • Landesman-Milo D, Ramishetti S, Peer D. Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer Metastasis Rev. 2015;34(2):291–301. doi:10.1007/s10555-015-9554-4
  • Iyer AK, Singh A, Ganta S, Amiji MM. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv. Drug Delivery Rev. 2013;65(13–14):1784–1802. doi:10.1016/j.addr.2013.07.012
  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320–12364. doi:10.1002/anie.201403036
  • Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Wiley interdisciplinary reviews. Nanomed Nanobiotechnol. 2016;8(2):271–299. doi:10.1002/wnan.1364
  • Brown PD, Patel PR. Nanomedicine: a pharma perspective. Wiley interdisciplinary reviews. Nanomed Nanobiotechnol. 2015;7(2):125–130. doi:10.1002/wnan.1288
  • Danhier F, Lecouturier N, Vroman B, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Controlled Release. 2009;133(1):11–17. doi:10.1016/j.jconrel.2008.09.086
  • Jin C, Bai L, Wu H, Song W, Guo G, Dou K. Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharm res. 2009;26(7):1776–1784. doi:10.1007/s11095-009-9889-z
  • Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur j Pharm. 2015;93:52–79.
  • Jadia R, Scandore C, Rai P. Nanoparticles for Effective Combination Therapy of Cancer. Int J Nanotechnol Nanomed. 2016;1(1):565.
  • Zhang DY, Shen XZ, Wang JY, Dong L, Zheng YL, Wu LL. Preparation of chitosan-polyaspartic acid-5-fluorouracil nanoparticles and its anti-carcinoma effect on tumor growth in nude mice. World J Gastroenterol. 2008;14(22):3554–3562. doi:10.3748/wjg.14.3554
  • Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41(7):2971–3010.
  • Lv S, Tang Z, Li M, et al. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials. 2014;35(23):6118–6129. doi:10.1016/j.biomaterials.2014.04.034
  • Zucker D, Andriyanov AV, Steiner A, Raviv U, Barenholz Y. Characterization of PEGylated nanoliposomes co-remotely loaded with topotecan and vincristine: relating structure and pharmacokinetics to therapeutic efficacy. J Control Release. 2012;160(2):281–289.
  • Misra R, Sahoo SK. Coformulation of doxorubicin and curcumin in poly(D,L-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in K562 cells. Mol Pharm. 2011;8(3):852–866. doi:10.1021/mp100455h
  • Sarisozen C, Abouzeid AH, Torchilin VP. The effect of co-delivery of paclitaxel and curcumin by transferrin-targeted PEG-PE-based mixed micelles on resistant ovarian cancer in 3-D spheroids and in vivo tumors. Eur J Pharm Biopharm. 2014;88(2):539–550. doi:10.1016/j.ejpb.2014.07.001
  • Chiang CS, Hu SH, Liao BJ, Chang YC, Chen SY. Enhancement of cancer therapy efficacy by trastuzumab-conjugated and pH-sensitive nanocapsules with the simultaneous encapsulation of hydrophilic and hydrophobic compounds. Nanomedicine. 2014;10(1):99–107. doi:10.1016/j.nano.2013.07.009
  • Tang J, Zhang L, Gao H, et al. Co-delivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to overcome multidrug resistance, enhance anti-tumor efficiency and reduce toxicity. Drug Deliv. 2016;23(4):1130–1143. doi:10.3109/10717544.2014.990651
  • Zhang X, Zeng X, Liang X, et al. The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials. 2014;35(33):9144–9154. doi:10.1016/j.biomaterials.2014.07.028
  • Song Q, Tan S, Zhuang X, et al. Nitric oxide releasing d-α-tocopheryl polyethylene glycol succinate for enhancing antitumor activity of doxorubicin. Mol Pharm. 2014;11(11):4118–4129.
  • Wan WJ, Qu CX, Zhou YJ, et al. Doxorubicin and siRNA-PD-L1 co-delivery with T7 modified ROS-sensitive nanoparticles for tumor chemoimmunotherapy. Int J Pharm. 2019;566:731–744. doi:10.1016/j.ijpharm.2019.06.030
  • Zhang F, Li M, Su Y, Zhou J, Wang W. A dual-targeting drug co-delivery system for tumor chemo- and gene combined therapy. Mater Sci Eng C Mater Biol Appl. 2016;64:208–218. doi:10.1016/j.msec.2016.03.083
  • Kang Y, Lu L, Lan J, et al. Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA. Acta Biomater. 2018;68:137–153. doi:10.1016/j.actbio.2017.12.028
  • Ren Q, Liang Z, Jiang X, et al. Enzyme and pH dual-responsive hyaluronic acid nanoparticles mediated combination of photodynamic therapy and chemotherapy. Int J Biol Macromol. 2019;130:845–852.
  • Wang D, Xu Z, Yu H, et al. Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods. Biomaterials. 2014;35(29):8374–8384. doi:10.1016/j.biomaterials.2014.05.094
  • Ren Y, Zhang H, Chen B, et al. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. Int J Nanomed. 2012;7:2261–2269. doi:10.2147/IJN.S29357
  • Zhang W, Li C, Shen C, et al. Prodrug-based nano-drug delivery system for co-encapsulate paclitaxel and carboplatin for lung cancer treatment. Drug Deliv. 2016;23(7):2575–2580. doi:10.3109/10717544.2015.1035466
  • Chauhan G, Chopra V, Tyagi A, Rath G, Sharma RK, Goyal AK. “Gold nanoparticles composite-folic acid conjugated graphene oxide nanohybrids” for targeted chemo-thermal cancer ablation: in vitro screening and in vivo studies. Eur J Pharm Sci. 2017;96:351–361. doi:10.1016/j.ejps.2016.10.011
  • Mir Y, Elrington SA, Hasan T. A new nanoconstruct for epidermal growth factor receptor-targeted photo-immunotherapy of ovarian cancer. Nanomedicine. 2013;9(7):1114–1122. doi:10.1016/j.nano.2013.02.005
  • Min H, Wang J, Qi Y, et al. Biomimetic Metal-Organic Framework Nanoparticles for Cooperative Combination of Antiangiogenesis and Photodynamic Therapy for Enhanced Efficacy. Adv Mater. 2019;31(15):e1808200. doi:10.1002/adma.201808200
  • Yue W, Chen L, Yu L, et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat Commun. 2019;10(1):2025. doi:10.1038/s41467-019-09760-3
  • Xiao H, Song H, Yang Q, et al. A prodrug strategy to deliver cisplatin(IV) and paclitaxel in nanomicelles to improve efficacy and tolerance. Biomaterials. 2012;33(27):6507–6519. doi:10.1016/j.biomaterials.2012.05.049
  • Wang Y, Xie Y, Li J, et al. Tumor-Penetrating Nanoparticles for Enhanced Anticancer Activity of Combined Photodynamic and Hypoxia-Activated Therapy. ACS Nano. 2017;11(2):2227–2238. doi:10.1021/acsnano.6b08731
  • Lu X, Wang QQ, Xu FJ, Tang GP, Yang WT. A cationic prodrug/therapeutic gene nanocomplex for the synergistic treatment of tumors. Biomaterials. 2011;32(21):4849–4856. doi:10.1016/j.biomaterials.2011.03.022
  • Li Y, Liu R, Yang J, Ma G, Zhang Z, Zhang X. Dual sensitive and temporally controlled camptothecin prodrug liposomes codelivery of siRNA for high efficiency tumor therapy. Biomaterials. 2014;35(36):9731–9745. doi:10.1016/j.biomaterials.2014.08.022
  • Galstyan A, Markman JL, Shatalova ES, et al. Blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nat Commun. 2019;10(1):3850. doi:10.1038/s41467-019-11719-3
  • Park J, Wrzesinski SH, Stern E, et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater. 2012;11(10):895–905. doi:10.1038/nmat3355
  • Cheng K, Ding Y, Zhao Y, et al. Sequentially Responsive Therapeutic Peptide Assembling Nanoparticles for Dual-Targeted Cancer Immunotherapy. Nano Lett. 2018;18(5):3250–3258. doi:10.1021/acs.nanolett.8b01071
  • Teo PY, Cheng W, Hedrick JL, Yang YY. Co-delivery of drugs and plasmid DNA for cancer therapy. Adv Drug Deliv Rev. 2016;98:41–63. doi:10.1016/j.addr.2015.10.014
  • He C, Tang Z, Tian H, Chen X. Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv Drug Deliv Rev. 2016;98:64–76. doi:10.1016/j.addr.2015.10.021
  • Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat. 2011;14(3):150–163. doi:10.1016/j.drup.2011.01.003
  • Abeylath SC, Ganta S, Iyer AK, Amiji M. Combinatorial-designed multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery. Acc Chem Res. 2011;44(10):1009–1017. doi:10.1021/ar2000106
  • Parekh G, Shi Y, Zheng J, Zhang X, Leporatti S. Nano-carriers for targeted delivery and biomedical imaging enhancement. Ther Deliv. 2018;9(6):451–468. doi:10.4155/tde-2018-0013
  • Palanikumar L, Jeena MT, Kim K, et al. Spatiotemporally and Sequentially-Controlled Drug Release from Polymer Gatekeeper-Hollow Silica Nanoparticles. Sci Rep. 2017;7:46540. doi:10.1038/srep46540
  • Moss DM, Siccardi M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modeling. Br J Pharmacol. 2014;171(17):3963–3979. doi:10.1111/bph.12604
  • Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release. 2019;301:76–109. doi:10.1016/j.jconrel.2019.03.015
  • Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev. 2009;61(13):1203–1213. doi:10.1016/j.addr.2009.05.006
  • Feng T, Tian H, Xu C, et al. Synergistic co- delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. Eur J Pharm Biopharm. 2014;88(3):1086–1093. doi:10.1016/j.ejpb.2014.09.012
  • Al-Lazikani B, Banerji U, Workman P. Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol. 2012;30(7):679–692. doi:10.1038/nbt.2284
  • Xu JL, Jin B, Ren ZH, et al. Chemotherapy plus Erlotinib versus Chemotherapy Alone for Treating Advanced Non-Small Cell Lung Cancer: a Meta-Analysis. PLoS One. 2015;10(7):e0131278. doi:10.1371/journal.pone.0131278
  • Zhang X, Yang Y, Liang X, et al. Enhancing therapeutic effects of docetaxel-loaded dendritic copolymer nanoparticles by co-treatment with autophagy inhibitor on breast cancer. Theranostics. 2014;4(11):1085–1095. doi:10.7150/thno.9933
  • Hu C, Gu F, Gong C, Xia Q, Gao Y, Gao S. Co-delivery of the autophagy inhibitor si-Beclin1 and the doxorubicin nano-delivery system for advanced prostate cancer treatment. J Biomater Appl. 2022;36(7):1317–1331. doi:10.1177/08853282211060252
  • Jia HZ, Zhang W, Zhu JY, et al. Hyperbranched-hyperbranched polymeric nanoassembly to mediate controllable co-delivery of siRNA and drug for synergistic tumor therapy. J Control Release. 2015;216:17.
  • Chen L, Qian M, Zhang L, et al. Co-delivery of doxorubicin and shRNA of Beclin1 by folate receptor targeted pullulan-based multifunctional nanomicelles for combinational cancer therapy. RSC Adv. 2018;8(32):17722.
  • Gao M, Xu Y, Qiu L. Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co -delivery via liposomes. Int J Nanomed. 2015;10:6615–6632. doi:10.2147/IJN.S91463
  • Schlinkert P, Casals E, Boyles M, et al. The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J Nanobiotechnology. 2015;13:1. doi:10.1186/s12951-014-0062-4
  • Xu J, Zhu X, Qiu L. Polyphosphazene vesicles for co-delivery of doxorubicin and chloroquine with enhanced anticancer efficacy by drug resistance reversal. Int J Pharm. 2016;498(1–2):70–81. doi:10.1016/j.ijpharm.2015.12.003
  • Lin YX, Wang Y, An HW, et al. Peptide-Based Autophagic Gene and Cisplatin Co-delivery Systems Enable Improved Chemotherapy Resistance. Nano Lett. 2019;19(5):2968–2978. doi:10.1021/acs.nanolett.9b00083
  • Zhao X, Dong Y, Zhang J, et al. Reversing immune evasion using a DNA nano-orchestrator for pancreatic cancer immunotherapy. Acta Biomater. 2023;166(512):523. doi:10.1016/j.actbio.2023.05.001
  • Zuo L, Nie W, Yu S, et al. Biomimetic Nanovesicle with Mitochondria-Synthesized Sonosensitizer and Mitophagy Inhibition for Cancer Sono-Immunotherapy. Nano Lett. 2023;23(7):3005–3013. doi:10.1021/acs.nanolett.3c00383
  • Yang X, Zhao M, Wu Z, et al. Nano-ultrasonic Contrast Agent for Chemoimmunotherapy of Breast Cancer by Immune Metabolism Reprogramming and Tumor Autophagy. ACS Nano. 2022;16(2):3417–3431. doi:10.1021/acsnano.2c00462
  • Zhu H, Gao X, Wang B, et al. A biodegradable hollow nanoagent enables a boosted chemodynamic therapy by simultaneous autophagy inhibition and macrophage reeducation. Int J Pharm. 2023;643:123248. doi:10.1016/j.ijpharm.2023.123248
  • Nirosha Yalamandala B, Chen PH, Moorthy T, Huynh TMH, Chiang WH, Hu SH. Programmed Catalytic Therapy- Mediated ROS Generation and T-Cell Infiltration in Lung Metastasis by a Dual Metal-Organic Framework (MOF) Nanoagent. Pharmaceutics. 2022;14(3):527. doi:10.3390/pharmaceutics14030527
  • Chen M, Yang D, Sun Y, et al. In Situ Self-Assembly Nanomicelle Microneedles for Enhanced Photoimmunotherapy via Autophagy Regulation Strategy. ACS Nano. 2021;15(2):3387–3401. doi:10.1021/acsnano.0c10396
  • Luo Y, Li Y, Huang Z, et al. A Nanounit Strategy Disrupts Energy Metabolism and Alleviates Immunosuppression for Cancer Therapy. Nano Lett. 2022;22(15):6418–6427. doi:10.1021/acs.nanolett.2c02475
  • Ruan S, Xie R, Qin L, et al. Aggregable Nanoparticles-Enabled Chemotherapy and Autophagy Inhibition Combined with Anti-PD-L1 Antibody for Improved Glioma Treatment. Nano Lett. 2019;19(11):8332. doi:10.1021/acs.nanolett.9b03968
  • Li Y, Cho MH, Lee SS, Lee DE, Cheong H, Choi Y. Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy. J Control Release. 2020;325:100–110. doi:10.1016/j.jconrel.2020.06.025
  • Ma Z, Lin K, Tang M, et al. A pH-Driven Small-Molecule Nanotransformer Hijacks Lysosomes and Overcomes Autophagy-Induced Resistance in Cancer. Angew Chem Int Ed Engl. 2022;61(35):e202204567. doi:10.1002/anie.202204567
  • Zhang X, Gao H, Wei D, et al. ROS Responsive Nanoparticles Encapsulated with Natural Medicine Remodel Autophagy Homeostasis in Breast Cancer. ACS Appl Mater Interfaces. 2023;15(25):29827–29840. doi:10.1021/acsami.3c03068
  • Li N, Gao Y, Li B, et al. Remote Manipulation of ROS-Sensitive Calcium Channel Using Near-Infrared-Responsive Conjugated Oligomer Nanoparticles for Enhanced Tumor Therapy In Vivo. Nano Lett. 2022;22(13):5427–5433. doi:10.1021/acs.nanolett.2c01472
  • Wang L, Wang Y, Zhao W, et al. Library Screening to Identify Highly-Effective Autophagy Inhibitors for Improving Photothermal Cancer Therapy. Nano Lett. 2021;21(22):9476–9484. doi:10.1021/acs.nanolett.1c02825
  • Yang Y, Huang J, Liu M, et al. Emerging Sonodynamic Therapy-Based Nanomedicines for Cancer Immunotherapy. Adv Sci (Weinh). 2023;10(2):e2204365. doi:10.1002/advs.202204365
  • Zhou L, Huo M, Qian MA. ROS-Responsive Nanomedicine: towards Targeting the Breast Tumor Microenvironment. Curr Med Chem. 2021;28(28):5674–5698. doi:10.2174/0929867328666201209100659
  • Zhou L, Huo M, Qian X, et al. Autophagy blockade synergistically enhances nanosonosensitizer-enabled sonodynamic cancer nanotherapeutics. J Nanobiotechnology. 2021;19(1):112. doi:10.1186/s12951-021-00855-y
  • Yu S, Chen Z, Zeng X, Chen X, Gu Z. Advances in nanomedicine for cancer starvation therapy. Theranostics. 2019;9(26):8026–8047. doi:10.7150/thno.38261
  • Yang B, Ding L, Chen Y, Shi J. Augmenting Tumor-Starvation Therapy by Cancer Cell Autophagy Inhibition. Adv Sci (Weinh). 2020;7(6):1902847. doi:10.1002/advs.201902847
  • Liu X, Gao P, Shi M, et al. An autophagy-inhibitory MOF nanoreactor for tumor-targeted synergistic therapy. Biomater Sci. 2022;10(12):3088–3091. doi:10.1039/D2BM00579D
  • Deng Y, Jia F, Jiang P, et al. Biomimetic nanoparticle synchronizing pyroptosis induction and mitophagy inhibition for anti-tumor therapy. Biomaterials. 2023;301:122293. doi:10.1016/j.biomaterials.2023.122293
  • Wang T, Xiao G, Lu Q, et al. Synergistic Lysosomal Impairment and ER Stress Activation for Boosted Autophagy Dysfunction Based on Te Double-Headed Nano-Bullets. Small. 2022;18(27):e2201585. doi:10.1002/smll.202201585
  • Wang C, Li Z, Xu P, Xu L, Han S, Sun Y. Combination of polythyleneimine regulating autophagy prodrug and Mdr1 siRNA for tumor multidrug resistance. J Nanobiotechnology. 2022;20(1):476. doi:10.1186/s12951-022-01689-y
  • Wang X, Li Y, Jia F, Cui X, Pan Z, Wu Y. Boosting nutrient starvation -dominated cancer therapy through curcumin-augmented mitochondrial Ca2+ overload and obatoclax-mediated autophagy inhibition as supported by a novel nano-regulator GO-Alg@CaP/CO. J Nanobiotechnology. 2022;20(1):225. doi:10.1186/s12951-022-01439-0
  • Zhang H, Meng L, Yin L, et al. ClC-3 silencing mediates lysosomal acidification arrest and autophagy inhibition to sensitize chemo-photothermal therapy. Int J Pharm. 2022;628:122297. doi:10.1016/j.ijpharm.2022.122297
  • Gao C, Kwong CHT, Wang Q, et al. Conjugation of Macrophage-Mimetic Microalgae and Liposome for Antitumor Sonodynamic Immunotherapy via Hypoxia Alleviation and Autophagy Inhibition. ACS Nano. 2023;17(4):4034–4049. doi:10.1021/acsnano.3c00041
  • Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5(9):726–734. doi:10.1038/nrc1692
  • Mele L, Del Vecchio V, Liccardo D, et al. The role of autophagy in resistance to targeted therapies. Cancer Treat Rev. 2020;88:102043. doi:10.1016/j.ctrv.2020.102043
  • Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell. 2009;137(6):1001–1004. doi:10.1016/j.cell.2009.05.023
  • Zhang X, Dong Y, Zeng X, et al. The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials. 2014;35(6):1932–1943. doi:10.1016/j.biomaterials.2013.10.034
  • Yan J, Shan C, Zhang Z, et al. Autophagy-induced intracellular signaling fractional nano-drug system for synergistic anti-tumor therapy. J Colloid Interface Sci. 2023;645:986–996. doi:10.1016/j.jcis.2023.05.031
  • Mohammed SA, Ju Y. Multifunctional liposomal nanostructure-mediated siRNA/bortezomib co-delivery for SHARP1 knockdown in MLL-AF6 acute myeloid leukemia. Biomater Adv. 2022;134:112663. doi:10.1016/j.msec.2022.112663
  • An J, Zhang K, Wang B, et al. Nanoenabled Disruption of Multiple Barriers in Antigen Cross-Presentation of Dendritic Cells via Calcium Interference for Enhanced Chemo-Immunotherapy. ACS Nano. 2020;14(6):7639–7650. doi:10.1021/acsnano.0c03881
  • Yu Z, Guo J, Hu M, Gao Y, Huang L. Icaritin Exacerbates Mitophagy and Synergizes with Doxorubicin to Induce Immunogenic Cell Death in Hepatocellular Carcinoma. ACS Nano. 2020;14(4):4816–4828. doi:10.1021/acsnano.0c00708
  • Li TF, Xu YH, Li K, et al. Doxorubicin-polyglycerol-nanodiamond composites stimulate glioblastoma cell immunogenicity through activation of autophagy. Acta Biomater. 2019;86:381–394. doi:10.1016/j.actbio.2019.01.020
  • Wang Y, Lin YX, Wang J, et al. In Situ Manipulation of Dendritic Cells by an Autophagy-Regulative Nanoactivator Enables Effective Cancer Immunotherapy. ACS Nano. 2019;13(7):7568–7577. doi:10.1021/acsnano.9b00143
  • Yue H, Wei W, Gu Z, et al. Exploration of graphene oxide as an intelligent platform for cancer vaccines. Nanoscale. 2015;7(47):19957. doi:10.1039/C5NR04986E
  • Deng Y, Song P, Chen X, et al. 3-Bromopyruvate-Conjugated Nanoplatform-Induced Pro-Death Autophagy for Enhanced Photodynamic Therapy against Hypoxic Tumor. ACS Nano. 2020;14(8):9711–9727. doi:10.1021/acsnano.0c01350
  • Sun M, Wang C, Lv M, Fan Z, Du J. Mitochondrial-targeting nanoprodrugs to mutually reinforce metabolic inhibition and autophagy for combating resistant cancer. Biomaterials. 2021;278:121168. doi:10.1016/j.biomaterials.2021.121168
  • Liu R, Li Q, Qin S, et al. Sertaconazole- repurposed nanoplatform enhances lung cancer therapy via CD44-targeted drug delivery. J Exp Clin Cancer Res. 2023;42(1):188. doi:10.1186/s13046-023-02766-2
  • Kavya KV, Vargheese S, Shukla S, et al. A cationic amino acid polymer nanocarrier synthesized in supercritical CO2 for co-delivery of drug and gene to cervical cancer cells. Colloids Surf B Biointerfaces. 2022;216:112584. doi:10.1016/j.colsurfb.2022.112584
  • Hanafy NAN, Sheashaa RF, Moussa EA, Mahfouz ME. Potential of curcumin and niacin-loaded targeted chitosan coated liposomes to activate autophagy in hepatocellular carcinoma cells: an in vitro evaluation in HePG2 cell line. Int J Biol Macromol. 2023;245:125572. doi:10.1016/j.ijbiomac.2023.125572
  • Chen J, Xue F, Du W, et al. An Endogenous H2S-Activated Nanoplatform for Triple Synergistic Therapy of Colorectal Cancer. Nano Lett. 2022;22(15):6156–6165. doi:10.1021/acs.nanolett.2c01346
  • Zhang R, Xu S, Yuan M, et al. An ultrasmall PVP-Fe-Cu -Ni-S nano-agent for synergistic cancer therapy through triggering ferroptosis and autophagy. Nanoscale. 2023;15(30):12598–12611. doi:10.1039/D3NR02708B
  • Li F, Chen T, Wang F, et al. Enhanced Cancer Starvation Therapy Enabled by an Autophagy Inhibitors-Encapsulated Biomimetic ZIF-8 Nanodrug: disrupting and Harnessing Dual Pro-Survival Autophagic Responses. ACS Appl Mater Interfaces. 2022;14(19):21860–21871. doi:10.1021/acsami.2c00552
  • Yin W, Pham CV, Wang T, et al. Inhibition of Autophagy Promotes the Elimination of Liver Cancer Stem Cells by CD133 Aptamer-Targeted Delivery of Doxorubicin. Biomolecules. 2022;12(11):1623. doi:10.3390/biom12111623
  • Ghosh C, Nandi A, Basu S. Supramolecular self-assembly of triazine-based small molecules: targeting the endoplasmic reticulum in cancer cells. Nanoscale. 2019;11(7):3326–3335. doi:10.1039/C8NR08682F
  • Wu J, Huang X, Xiao Z, et al. Nano-Pt mitochondria induced-dependent apoptosis and cytoprotective autophagy in human NSCLC cells. Colloids Surf B Biointerfaces. 2023;227:113344. doi:10.1016/j.colsurfb.2023.113344
  • Adiseshaiah PP, Clogston JD, McLeland CB, et al. Synergistic combination therapy with nanoliposomal C6-ceramide and vinblastine is associated with autophagy dysfunction in hepatocarcinoma and colorectal cancer models. Cancer Lett. 2013;337(2):254–265. doi:10.1016/j.canlet.2013.04.034
  • Shaw JJP, Boyer TL, Venner E, et al. Inhibition of Lysosomal Function Mitigates Protective Mitophagy and Augments Ceramide Nanoliposome-Induced Cell Death in Head and Neck Squamous Cell Carcinoma. Mol Cancer Ther. 2020;19(12):2621–2633. doi:10.1158/1535-7163.MCT-20-0182
  • Li N, Han S, Ma B, et al. Chemosensitivity enhanced by autophagy inhibition based on a polycationic nano-drug carrier. Nanoscale Adv. 2021;3(6):1656–1673. doi:10.1039/D0NA00990C
  • Xie Y, Jiang J, Tang Q, et al. Iron Oxide Nanoparticles as Autophagy Intervention Agents Suppress Hepatoma Growth by Enhancing Tumoricidal Autophagy. Adv Sci (Weinh). 2020;7(16):1903323. doi:10.1002/advs.201903323
  • Zhang P, Shi Y, Xu Y, et al. A Nano-Autophagy Inhibitor Triggering Reciprocal Feedback Control of Cholesterol Depletion for Solid Tumor Therapy. Adv Healthc Mater;2023. e2302020. doi:10.1002/adhm.202302020
  • Lu HY, Chang YJ, Fan NC, et al. Synergism through combination of chemotherapy and oxidative stress-induced autophagy in A549 Lung cancer cells using redox-responsive nanohybrids: a new strategy for cancer therapy. Biomaterials. 2015;42:30–41. doi:10.1016/j.biomaterials.2014.11.029
  • Wang XS, Zeng JY, Li MJ, Li QR, Gao F, Zhang XZ. Highly Stable Iron Carbonyl Complex Delivery Nanosystem for Improving Cancer Therapy. ACS Nano. 2020;14(8):9848–9860. doi:10.1021/acsnano.0c02516
  • Lv C, Kang W, Liu S, et al. Growth of ZIF-8 Nanoparticles In Situ on Graphene Oxide Nanosheets: a Multifunctional Nanoplatform for Combined Ion-Interference and Photothermal Therapy. ACS Nano. 2022;16(7):11428–11443. doi:10.1021/acsnano.2c05532
  • Zhou Y, Han Y, Li G, Yang S, Xiong F, Chu F. Preparation of Targeted Lignin⁻Based Hollow Nanoparticles for the Delivery of Doxorubicin. Nanomaterials (Basel). 2019;9(2):188. doi:10.3390/nano9020188
  • Andhari SS, Wavhale RD, Dhobale KD, et al. Self-Propelling Targeted Magneto -Nanobots for Deep Tumor Penetration and pH-Responsive Intracellular Drug Delivery. Sci Rep. 2020;10(1):4703. doi:10.1038/s41598-020-61586-y
  • Gavini J, Dommann N, Jakob MO, et al. Verteporfin-induced lysosomal compartment dysregulation potentiates the effect of sorafenib in hepatocellular carcinoma. Cell Death Dis. 2019;10(10):749. doi:10.1038/s41419-019-1989-z
  • Xu Y, Zheng H, Kang JS, et al. 5-Nitro-2-(3-phenylpropylamino) benzoic acid induced drug resistance to cisplatin in human erythroleukemia cell lines. Anat Rec (Hoboken). 2011;294(6):945–952. doi:10.1002/ar.21392
  • Seebacher NA, Richardson DR, Jansson PJ. A mechanism for overcoming P-glycoprotein-mediated drug resistance: novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC. Cell Death Dis. 2016;7(12):e2510. doi:10.1038/cddis.2016.381
  • Zhu X, Ji X, Kong N, et al. Intracellular Mechanistic Understanding of 2D MoS2 Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy. ACS Nano. 2018;12(3):2922–2938. doi:10.1021/acsnano.8b00516
  • Yin Y, Wang J, Yang M, et al. Penetration of the blood-brain barrier and the anti-tumour effect of a novel PLGA-lysoGM1/DOX micelle drug delivery system. Nanoscale. 2020;12(5):2946–2960. doi:10.1039/C9NR08741A
  • Ding L, Zhu X, Wang Y, et al. Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Novel Strategy for Exocytosis-Inhibiting, Lysosome Impairment-Based Cancer Therapy. Nano Lett. 2017;17(11):6790–6801. doi:10.1021/acs.nanolett.7b03021
  • Lin YW, Lin TT, Chen CH, et al. Enhancing Efficacy of Albumin-Bound Paclitaxel for Human Lung and Colorectal Cancers through Autophagy Receptor Sequestosome 1 (SQSTM1)/p62-Mediated Nanodrug Delivery and Cancer therapy. ACS Nano. 2023. doi:10.1021/acsnano.3c04739
  • Kong C, Li Y, Liu Z, et al. Targeting the Oncogene KRAS Mutant Pancreatic Cancer by Synergistic Blocking of Lysosomal Acidification and Rapid Drug Release. ACS Nano. 2019;13(4):4049–4063. doi:10.1021/acsnano.8b08246
  • Li X, Wang ZG, Zhu H, et al. Inducing Autophagy and Blocking Autophagic Flux via a Virus-Mimicking Nanodrug for Cancer Therapy. Nano Lett. 2022;22(22):9163–9173. doi:10.1021/acs.nanolett.2c04091
  • Jiang L, Liang X, Liu G, et al. The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery. Drug Deliv. 2018;25(1):985–994. doi:10.1080/10717544.2018.1461954
  • Zhang Q, Yang W, Man N, et al. Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal. Autophagy. 2009;5(8):1107–1117. doi:10.4161/auto.5.8.9842
  • Xiong Q, Liu A, Ren Q, et al. Cuprous oxide nanoparticles trigger reactive oxygen species-induced apoptosis through activation of erk-dependent autophagy in bladder cancer. Cell Death Dis. 2020;11(5):366. doi:10.1038/s41419-020-2554-5
  • Liu M, Liu Z, Qin G, Ren J, Qu X. Bioorthogonally Activatable Autophagy-Tethering Compounds for Aptamer-Guided Mitochondrial Degradation. Nano Lett. 2023;23(11):4965–4973. doi:10.1021/acs.nanolett.3c00798
  • Chen F, Zhang XH, Hu XD, Liu PD, Zhang HQ. The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro. Artif Cells Nanomed Biotechnol. 2018;46(5):937–948. doi:10.1080/21691401.2017.1347941
  • Liu Z, Tan H, Zhang X, et al. Enhancement of radiotherapy efficacy by silver nanoparticles in hypoxic glioma cells. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S922–S930. doi:10.1080/21691401.2018.1518912
  • Liu P, Jin H, Guo Z, et al. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. Int J Nanomed. 2016;11:5003–5014. doi:10.2147/IJN.S115473
  • Ma S, Miao H, Luo Y, et al. FePt/GO Nanosheets Suppress Proliferation, Enhance Radiosensitization and Induce Autophagy of Human Non-Small Cell Lung Cancer Cells. Int J Biol Sci. 2019;15(5):999–1009. doi:10.7150/ijbs.29805
  • Zhang X, Liu Z, Lou Z, et al. Radiosensitivity enhancement of Fe3O4@Ag nanoparticles on human glioblastoma cells. Artif Cells Nanomed Biotechnol. 2018;46(sup1):975–984. doi:10.1080/21691401.2018.1439843
  • Li F, Li Z, Jin X, et al. Ultra-small gadolinium oxide nanocrystal sensitization of non-small-cell lung cancer cells toward X-ray irradiation by promoting cytostatic autophagy. Int J Nanomed. 2019;14:2415–2431. doi:10.2147/IJN.S193676
  • Sadhukha T, Wiedmann TS, Panyam J. Enhancing therapeutic efficacy through designed aggregation of nanoparticles. Biomaterials. 2014;35(27):7860–7869.
  • Zhang L, Jia Y, Yang J, et al. Efficient Immunotherapy of Drug-Free Layered Double Hydroxide Nanoparticles via Neutralizing Excess Acid and Blocking Tumor Cell Autophagy. ACS Nano. 2022;16(8):12036–12048. doi:10.1021/acsnano.2c02183
  • Jia Y, Hu J, Zhu C, et al. Engineered NanoAlum from aluminum turns cold tumor hot for potentiating cancer metalloimmunotherapy. J Control Release. 2023;354:770–783. doi:10.1016/j.jconrel.2023.01.043
  • Xu J, Wang H, Hu Y, et al. Inhibition of CaMKIIα Activity Enhances Antitumor Effect of Fullerene C60 Nanocrystals by Suppression of Autophagic Degradation. Adv Sci (Weinh). 2019;6(8):1801233.
  • Chen Y, Yang L, Feng C, Wen LP. Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells. Biochem Biophys Res Commun. 2005;337(1):52–60.
  • Hao BM, Liu YN, Zhang CY, et al. Autophagic blockage by bismuth sulfide nanoparticles inhibits migration and invasion of HepG2 cells. Nanotechnology. 2020;31(46):465102. doi:10.1088/1361-6528/abadc6
  • Wang Y, Huang Y, Fu Y, et al. Reductive damage induced autophagy inhibition for tumor therapy. Nano Res. 2023;16(4):5226–5236. doi:10.1007/s12274-022-5139-z
  • Ray E, Vaghasiya K, Sharma A, et al. Autophagy-Inducing Inhalable Co-crystal Formulation of Niclosamide-Nicotinamide for Lung Cancer Therapy. AAPS Pharm Sci Tech. 2020;21(7):260.
  • Yang F, Wang X, Sun J, et al. Mesopore-encaged active MnOx in nano-silica selectively suppresses lung cancer cells by inducing autophagy. Biomater Sci. 2023;11(6):2056–2064. doi:10.1039/D2BM01826H
  • Liu Z, Du Z, Li K, Han Y, Ren G, Yang Z. TRPC6-Mediated Ca2+ Entry Essential for the Regulation of Nano-ZnO Induced Autophagy in SH-SY5Y Cells. Neurochem Res. 2020;45(7):1602–1613. doi:10.1007/s11064-020-03025-y
  • Yang R, Wu R, Mei J, Hu FR, Lei CJ. Zinc oxide nanoparticles promotes liver cancer cell apoptosis through inducing autophagy and promoting p53. Eur Rev Med Pharmacol Sci. 2021;25(3):1557–1563.
  • Du Z, Chai X, Li X, Ren G, Yang X, Yang Z. Nano-CuO causes cell damage through activation of dose-dependent autophagy and mitochondrial lncCyt b-AS/ND5-AS/ND6-AS in SH-SY5Y cells. Toxicol Mech Methods. 2022;32(1):37–48. doi:10.1080/15376516.2021.1964665
  • Wen J, Chen H, Ren Z, Zhang P, Chen J, Jiang S. Ultrasmall iron oxide nanoparticles induced ferroptosis via Beclin1/ATG5-dependent autophagy pathway. Nano Converg. 2021;8(1):10. doi:10.1186/s40580-021-00260-z
  • Zamanvaziri A, Meshkat M, Alazmani S, Khaleghi S, Hashemi M. Targeted PEGylated Chitosan Nano-complex for Delivery of Sodium Butyrate to Prostate Cancer: an In Vitro Study. Technol Cancer Res Treat. 2023;22:15330338231159223. doi:10.1177/15330338231159223
  • Menconi A, Marzo T, Massai L, et al. Anticancer effects against colorectal cancer models of chloro(triethylphosphine)gold(I) encapsulated in PLGA-PEG nanoparticles. Biometals. 2021;34(4):867–879. doi:10.1007/s10534-021-00313-0
  • Luo H, Lu L, Yang F, et al. Nasopharyngeal cancer-specific therapy based on fusion peptide-functionalized lipid nanoparticles. ACS Nano. 2014;8(5):4334–4347. doi:10.1021/nn405989n
  • Kim I, Song YH, Singh N, et al. Anticancer activities of self-assembled molecular bowls containing a phenanthrene-based donor and Ru(II) acceptors. Int J Nanomed. 2015;10:143–153. doi:10.2147/IJN.S88287
  • Shi M, Cheng L, Zhang Z, Liu Z, Mao X. Ferroferric oxide nanoparticles induce prosurvival autophagy in human blood cells by modulating the Beclin 1/Bcl-2/VPS34 complex. Int J Nanomed. 2014;10(207):–. doi:10.2147/IJN.S72598
  • Becker AL, Orlotti NI, Folini M, et al. Redox-active polymer microcapsules for the delivery of a survivin-specific siRNA in prostate cancer cells. ACS Nano. 2011;5(2):1335–1344. doi:10.1021/nn103044z
  • Aryal S, Hu CM, Zhang L. Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol Pharm. 2011;8(4):1401–1407. doi:10.1021/mp200243k
  • Huang P, Wang D, Su Y, et al. Combination of small Molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. J Am Chem Soc. 2014;136(33):11748–11756. doi:10.1021/ja505212y