232
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Effect of C7-3-Peptide-Loaded Chitosan Nanoparticles Against Multi-Drug-Resistant Neisseria gonorrhoeae

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 609-631 | Received 21 Nov 2023, Accepted 09 Jan 2024, Published online: 18 Jan 2024

References

  • Jefferson A, Smith A, Fasinu PS, Thompson DK. Sexually transmitted Neisseria gonorrhoeae infections-update on drug treatment and vaccine development. Medicines. 2021;8(2):11. doi:10.3390/medicines8020011
  • Alqahtani F, Aleanizy F, El Tahir E, et al. Antibacterial activity of chitosan nanoparticles against pathogenic n. gonorrhoea. Int J Nanomed. 2020;15:7877–7887. doi:10.2147/IJN.S272736
  • Suay-Garcia B, Perez-Gracia MT. Future prospects for Neisseria gonorrhoeae treatment. Antibiotics. 2018;7(2):49. doi:10.3390/antibiotics7020049
  • Lim KYL, Mullally CA, Haese EC, et al. Anti-virulence therapeutic approaches for Neisseria gonorrhoeae. Antibiotics. 2021;10(2):103. doi:10.3390/antibiotics10020103
  • Saravanan M, Belete MA, Niguse S, et al. Antimicrobial resistance and antimicrobial nanomaterials: an overview; 2021.
  • Micoli F, Bagnoli F, Rappuoli R, Serruto D. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 2021;19(5):287–302. doi:10.1038/s41579-020-00506-3
  • Goire N, Lahra MM, Chen M, et al. Molecular approaches to enhance surveillance of gonococcal antimicrobial resistance. Nat Rev Microbiol. 2014;12(3):223–229. doi:10.1038/nrmicro3217
  • World Health Organization. WHO Guidelines for the Treatment of Neisseria Gonorrhoeae. World Health Organization; 2016.
  • Nelson RE, Hatfield KM, Wolford H, et al. National estimates of healthcare costs associated with multidrug-resistant bacterial infections among hospitalized patients in the United States. Clin Infect Dis. 2021;72(Supplement_1):S17–S26. doi:10.1093/cid/ciaa1581
  • Isabella VM, Clark VL. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics. 2011;12(1):51. doi:10.1186/1471-2164-12-51
  • Falsetta ML, Bair TB, Ku SC, et al. Transcriptional profiling identifies the metabolic phenotype of gonococcal biofilms. Infect Immun. 2009;77(9):3522–3532. doi:10.1128/IAI.00036-09
  • Clark VL, Knapp JS, Thompson S, Klimpel KW. Presence of antibodies to the major anaerobically induced gonococcal outer membrane protein in sera from patients with gonococcal infections. Microb Pathog. 1988;5(5):381–390. doi:10.1016/0882-4010(88)90038-1
  • Sikora AE, Mills RH, Weber JV, et al. Peptide inhibitors targeting the Neisseria gonorrhoeae pivotal anaerobic respiration factor AniA. Antimicrob Agents Chemother. 2017;61. doi:10.1128/AAC.00186-17
  • Guzman CA, Feuerstein GZ. Pharmaceutical biotechnology. Curr Opinion Biotechnol. 2004;15(6):503–505. doi:10.1016/j.copbio.2004.10.009
  • Sosnik A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing “Generally Recognized As Safe” (GRAS) nanopharmaceuticals: a review. Adv Drug Deliv Rev. 2013;65(13–14):1828–1851. doi:10.1016/j.addr.2013.09.002
  • Yu H, Ma Z, Meng S, et al. A novel nanohybrid antimicrobial based on chitosan nanoparticles and antimicrobial peptide microcin J25 with low toxicity. Carbohydr Polym. 2021;253:117309. doi:10.1016/j.carbpol.2020.117309
  • Wong CY, Al-Salami H, Dass CR. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation. J Drug Target. 2018;26(7):551–562. doi:10.1080/1061186X.2017.1400552
  • Piras AM, Maisetta G, Sandreschi S, et al. Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Front Microbiol. 2015;6:372. doi:10.3389/fmicb.2015.00372
  • Melvin M, Weinstein P. Performance Standards for Antimicrobial Disk Susceptibility Tests. Vol. 38. CLSI; 2018:92.
  • Spence JM, Wright L, Clark VL. Laboratory maintenance of Neisseria gonorrhoeae. Curr Protocols Microbiol. 2008;8(1). doi:10.1002/9780471729259.mc04a01s8
  • Melvin M, Weinstein P. Performance Standards for Antimicrobial Disk Susceptibility Tests. Vol. 35. 33 ed. CLSI; 2021.
  • Mao S, Bakowsky U, Jintapattanakit A, Kissel T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin. J Pharm Sci. 2006;95(5):1035–1048. doi:10.1002/jps.20520
  • Gokce Y, Cengiz B, Yildiz N, Calimli A, Aktas Z. Ultrasonication of chitosan nanoparticle suspension: influence on particle size. Colloids Surf A. 2014;462:75–81. doi:10.1016/j.colsurfa.2014.08.028
  • Yadav P, Yadav AB. Preparation and characterization of BSA as a model protein loaded chitosan nanoparticles for the development of protein-/peptide-based drug delivery system. Future J Pharm Sci. 2021;7:200. doi:10.1186/s43094-021-00345-w
  • Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35(9):780–789. doi:10.1039/b515219b
  • Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials. 2006;27(11):2450–2467. doi:10.1016/j.biomaterials.2005.11.031
  • Cetin M, Aktas Y, Vural I, et al. Preparation and in vitro evaluation of bFGF-loaded chitosan nanoparticles. Drug Deliv. 2007;14(8):525–529. doi:10.1080/10717540701606483
  • Alqahtani FY, Aleanizy FS, El Tahir E, et al. Capsule independent antimicrobial activity induced by nanochitosan against Streptococcus pneumoniae. Polymers. 2021;13(17):2924. doi:10.3390/polym13172924
  • Almaaytah A, Mohammed GK, Abualhaijaa A, Al-Balas Q. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Design Dev Ther. 2017;11:3159–3170. doi:10.2147/DDDT.S147450
  • Jayathilaka EHTT, Nikapitiya C, De Zoysa M, Whang I. Antimicrobial peptide octominin-encapsulated chitosan nanoparticles enhanced antifungal and antibacterial activities. Int J Mol Sci. 2022;23(24):15882. doi:10.3390/ijms232415882
  • Primo L, Roque-Borda CA, Carnero Canales CS, et al. Antimicrobial peptides grafted onto the surface of N-acetylcysteine-chitosan nanoparticles can revitalize drugs against clinical isolates of Mycobacterium tuberculosis. Carbohydr Polym. 2024;323:121449. doi:10.1016/j.carbpol.2023.121449
  • Tamara FR, Lin C, Mi FL, Ho YC. Antibacterial effects of chitosan/cationic peptide nanoparticles. Nanomaterials. 2018;8(2):88. doi:10.3390/nano8020088
  • Carlson RP, Taffs R, Davison WM, Stewart PS. Anti-biofilm properties of chitosan-coated surfaces. J Biomater Sci Polym Ed. 2008;19(8):1035–1046. doi:10.1163/156856208784909372
  • Khan F, Pham DTN, Oloketuyi SF, Manivasagan P, Oh J, Kim Y-M. Chitosan and their derivatives: antibiofilm drugs against pathogenic bacteria. Colloids Surf B. 2020;185:110627. doi:10.1016/j.colsurfb.2019.110627