171
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Copper-Based Single-Atom Nanozyme System Mimicking Platelet Cells for Enhancing the Outcome of Radioimmunotherapy

, , , , , ORCID Icon & ORCID Icon show all
Pages 403-414 | Received 20 Oct 2023, Accepted 13 Dec 2023, Published online: 15 Jan 2024

References

  • Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022. Ca a Cancer J Clinicians. 2022;72(6):524–541. doi:10.3322/caac.21754
  • Katsura C, Ogunmwonyi I, Kankam HKN, Saha S. Breast cancer: presentation, investigation and management. Br J Hosp Med. 2022;83(2):1–7. doi:10.12968/hmed.2021.0459
  • Kunkler IH, Williams LJ, Jack WJL, Cameron DA, Dixon JM. Breast-conserving surgery with or without irradiation in early breast cancer. N Engl J Med. 2023;388(7):585–594. doi:10.1056/NEJMoa2207586
  • Group EBCTC. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378(9804):1707–1716. doi:10.1016/S0140-6736(11)61629-2
  • Whelan TJ, Smith S, Parpia S, et al. Omitting radiotherapy after breast-conserving surgery in luminal a breast cancer. N Engl J Med. 2023;389(7):612–619. doi:10.1056/NEJMoa2302344
  • Yadav P, Shankar BS. Radio resistance in breast cancer cells is mediated through TGF-β signalling, hybrid epithelial-mesenchymal phenotype and cancer stem cells. Biomed Pharmacother. 2019;111:119–130. doi:10.1016/j.biopha.2018.12.055
  • Troschel FM, Palenta H, Borrmann K, et al. Knockdown of the prognostic cancer stem cell marker musashi-1 decreases radio-resistance while enhancing apoptosis in hormone receptor-positive breast cancer cells via p21WAF1/CIP1. J Cancer Res Clin Oncol. 2021;147(11):3299–3312. doi:10.1007/s00432-021-03743-y
  • Wang M, Chang M, Li C, et al. Tumor-microenvironment-activated reactive oxygen species amplifier for enzymatic cascade cancer starvation/chemodynamic/immunotherapy. Adv Mater. 2022;34(4):2106010. doi:10.1002/adma.202106010
  • Pan W-L, Tan Y, Meng W, et al. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials. 2022;283:121449. doi:10.1016/j.biomaterials.2022.121449
  • Zhu Y, Wang W, Cheng J, et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew Chem Int Ed. 2021;60(17):9480–9488. doi:10.1002/anie.202017152
  • Siddique S, Chow JCL. Recent advances in functionalized nanoparticles in cancer theranostics. Nanomaterials. 2022;12(16):2826. doi:10.3390/nano12162826
  • Siddique S, Chow JCL. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials. 2020;10(9):1700. doi:10.3390/nano10091700
  • Wang Q, Liu J, He L, Liu S, Yang P. Nanozyme: a rising star for cancer therapy. Nanoscale. 2023;15(30):12455–12463. doi:10.1039/D3NR01976D
  • Li S, Shang L, Xu B, et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew Chem Int Ed. 2019;58(36):12624–12631. doi:10.1002/anie.201904751
  • Lyu M, Luo M, Li J, et al. Personalized carbon monoxide-loaded biomimetic single-atom nanozyme for ferroptosis-enhanced flash radioimmunotherapy. Adv Funct Mater. 2023;33(51):2306930. doi:10.1002/adfm.202306930
  • Wang Z, Li Z, Sun Z, et al. Visualization nanozyme based on tumor microenvironment “unlocking” for intensive combination therapy of breast cancer. Sci Adv. 2020;6(48):eabc8733. doi:10.1126/sciadv.abc8733
  • Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–583. doi:10.1038/nnano.2007.260
  • Wu C, Xu D, Ge M, et al. Blocking glutathione regeneration: inorganic NADPH oxidase nanozyme catalyst potentiates tumoral ferroptosis. Nano Today. 2022;46:101574. doi:10.1016/j.nantod.2022.101574
  • Wang P, Liu S, Hu M, et al. Peroxidase-like nanozymes induce a novel form of cell death and inhibit tumor growth in vivo. Adv Funct Mater. 2020;30(21):2000647. doi:10.1002/adfm.202000647
  • Zhang R, Xue B, Tao Y, et al. Edge-site engineering of defective fe–n4 nanozymes with boosted catalase-like performance for retinal vasculopathies. Adv Mater. 2022;34(39):2205324. doi:10.1002/adma.202205324
  • Zhang Y, Gao W, Ma Y, et al. Integrating pt nanoparticles with carbon nanodots to achieve robust cascade superoxide dismutase-catalase nanozyme for antioxidant therapy. Nano Today. 2023;49:101768. doi:10.1016/j.nantod.2023.101768
  • Li W, Song Y, Liang X, et al. Mutual-reinforcing sonodynamic therapy against rheumatoid arthritis based on sparfloxacin sonosensitizer doped concave-cubic rhodium nanozyme. Biomaterials. 2021;276:121063. doi:10.1016/j.biomaterials.2021.121063
  • Zhu D, Ling R, Chen H, et al. Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy. Nano Res. 2022;15(8):7320–7328. doi:10.1007/s12274-022-4359-6
  • Zhu D, Chen H, Huang C, et al. H2O2 self-producing single-atom nanozyme hydrogels as light-controlled oxidative stress amplifier for enhanced synergistic therapy by transforming “cold” tumors. Adv Funct Mater. 2022;32(16):2110268. doi:10.1002/adfm.202110268
  • Liu Y, Wang B, Zhu J, Xu X, Zhou B, Yang Y. Single-atom nanozyme with asymmetric electron distribution for tumor catalytic therapy by disrupting tumor redox and energy metabolism homeostasis. Adv Mater. 2023;35(9):2208512. doi:10.1002/adma.202208512
  • Cai S, Liu J, Ding J, et al. Tumor-microenvironment-responsive cascade reactions by a cobalt-single-atom nanozyme for synergistic nanocatalytic chemotherapy. Angew Chem Int Ed. 2022;61(48):e202204502. doi:10.1002/anie.202204502
  • Liu J, Cabral H, Song B, et al. Nanoprobe-based magnetic resonance imaging of hypoxia predicts responses to radiotherapy, immunotherapy, and sensitizing treatments in Pancreatic Tumors. ACS Nano. 2021;15(8):13526–13538. doi:10.1021/acsnano.1c04263
  • Laprise-Pelletier M, Simão T, Fortin M-A. Gold nanoparticles in radiotherapy and recent progress in nanobrachytherapy. Adv Healthcare Mater. 2018;7(16):1701460. doi:10.1002/adhm.201701460
  • Feng L, Dong Z, Liang C, et al. Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials. 2018;181:81–91. doi:10.1016/j.biomaterials.2018.07.049
  • Haume K, Rosa S, Grellet S, et al. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol. 2016;7(1):8. doi:10.1186/s12645-016-0021-x
  • Azharuddin M, Zhu GH, Das D, et al. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun. 2019;55(49):6964–6996. doi:10.1039/c9cc01741k
  • Zhu Y, Jin D, Liu M, et al. Oxygen self-supply engineering-ferritin for the relief of hypoxia in tumors and the enhancement of photodynamic therapy efficacy. Small. 2022;18(15):2200116. doi:10.1002/smll.202200116
  • Lu N, Fan W, Yi X, et al. Biodegradable hollow mesoporous organosilica nanotheranostics for mild hyperthermia-induced bubble-enhanced oxygen-sensitized radiotherapy. ACS Nano. 2018;12(2):1580–1591. doi:10.1021/acsnano.7b08103
  • Wang M, Chang M, Zheng P, et al. A noble auptag-gox nanozyme for synergistic tumor immunotherapy induced by starvation therapy-augmented mild photothermal therapy. Adv Sci. 2022;9(31):2202332. doi:10.1002/advs.202202332
  • Yao L, Zhao -M-M, Luo Q-W, et al. carbon quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity. ACS Nano. 2022;16(6):9228–9239. doi:10.1021/acsnano.2c01619
  • Lyu M, Chen M, Liu L, et al. A platelet-mimicking theranostic platform for cancer interstitial brachytherapy. Theranostics. 2021;11(15):7589–7599. doi:10.7150/thno.61259
  • Lyu M, Zhang T, Li Y, et al. AIEgen-based nanotherapeutic strategy for enhanced FLASH irradiation to prevent tumour recurrence and avoid severe side effects. Chem Eng J. 2023;473:145179. doi:10.1016/j.cej.2023.145179
  • Dehaini D, Wei X, Fang RH, et al. Erythrocyte–platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv Mater. 2017;29(16):1606209. doi:10.1002/adma.201606209
  • Hara Y, Steiner M, Baldini MG. Characterization of the platelet-aggregating activity of tumor cells. Cancer Res. 1980;40(4):1217–1222.