101
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Enzyme-Linked Lipid Nanocarriers for Coping Pseudomonal Pulmonary Infection. Would Nanocarriers Complement Biofilm Disruption or Pave Its Road?

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 3861-3890 | Received 17 Nov 2023, Accepted 28 Mar 2024, Published online: 28 Apr 2024

References

  • Malhotra S, Hayes D, Wozniak Daniel J. Cystic fibrosis and pseudomonas aeruginosa: the host-microbe interface. Clin Microbiol Rev. 2019;32(3):e00138–00118. doi:10.1128/CMR.00138-18
  • Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–633. doi:10.1038/nrmicro2415
  • Hadinoto K, Cheow WS. Nano-antibiotics in chronic lung infection therapy against Pseudomonas aeruginosa. Colloids Surf B. 2014;116:772–785. doi:10.1016/j.colsurfb.2014.02.032
  • Maunders E, Welch M. Matrix exopolysaccharides; the sticky side of biofilm formation. FEMS Microbiol Lett. 2017;364(13). doi:10.1093/femsle/fnx120
  • Cotton LA, Graham RJ, Lee RJ. The role of alginate in P. aeruginosa PAO1 biofilm structural resistance to gentamicin and ciprofloxacin. J Exp Microbiol Immunol. 2009;13:58–62.
  • Kim HS, Lee C-G, Lee EY. Alginate lyase: structure, property, and application. Biotechnol Bioprocess Eng. 2011;16(5):843. doi:10.1007/s12257-011-0352-8
  • Omri A, Beaulac C, Bouhajib M, Montplaisir S, Sharkawi M, Lagace J. Pulmonary retention of free and liposome-encapsulated tobramycin after intratracheal administration in uninfected rats and rats infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1994;38(5):1090–1095. doi:10.1128/AAC.38.5.1090
  • Patel KK, Tripathi M, Pandey N, et al. Alginate lyase immobilized chitosan nanoparticles of ciprofloxacin for the improved antimicrobial activity against the biofilm associated mucoid P. aeruginosa infection in cystic fibrosis. Int J Pharm. 2019;563:30–42. doi:10.1016/j.ijpharm.2019.03.051
  • Li S, Wang Y, Li X, Lee BS, Jung S, Lee M-S. Enhancing the thermo-stability and anti-biofilm activity of alginate lyase by immobilization on low molecular weight chitosan nanoparticles. Int J Mol Sci. 2019;20(18):4565. doi:10.3390/ijms20184565
  • Günday Türeli N, Torge A, Juntke J, et al. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur J Pharm Biopharm. 2017;117:363–371. doi:10.1016/j.ejpb.2017.04.032
  • Torge A, Wagner S, Chaves PS, et al. Ciprofloxacin-loaded lipid-core nanocapsules as mucus penetrating drug delivery system intended for the treatment of bacterial infections in cystic fibrosis. Int J Pharm. 2017;527(1–2):92–102. doi:10.1016/j.ijpharm.2017.05.013
  • Gunday Tureli N, Tureli AE, Schneider M. Inhalable antibiotic nanoformulations for the treatment of pseudomonas aeruginosa infection in cystic fibrosis – a review. Drug Deliv Lett. 2014;4(3):193–207. doi:10.2174/2210303104666140222002101
  • Alipour M, Suntres ZE, Omri A. Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J Antimicrob Chemother. 2009;64(2):317–325. doi:10.1093/jac/dkp165
  • Chemani C, Imberty A, de Bentzmann S, et al. Role of LecA and LecB Lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect Immun. 2009;77(5):2065–2075. doi:10.1128/IAI.01204-08
  • Baelo A, Levato R, Julián E, et al. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release. 2015;209:150–158. doi:10.1016/j.jconrel.2015.04.028
  • Hurley MN, Cámara M, Smyth AR. Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir J. 2012;40(4):1014. doi:10.1183/09031936.00042012
  • Reymond J-L, Bergmann M, Darbre T. Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Chem Soc Rev. 2013;42(11):4814–4822. doi:10.1039/c3cs35504g
  • Hamed MM, Abdelsamie AS, Rox K, et al. Towards translation of PqsR inverse agonists: from in vitro efficacy optimization to in vivo proof-of-principle. Adv Sci. 2023;10(5):2204443. doi:10.1002/advs.202204443
  • Wagner S, Sommer R, Hinsberger S, et al. Novel strategies for the treatment of pseudomonas aeruginosa infections. J Med Chem. 2016;59(13):5929–5969. doi:10.1021/acs.jmedchem.5b01698
  • Hartmann R, Steinbach A, Lu C, et al. Helmholtz-Zentrums für Infektionsforschung, Braunschweig, assignee. PqsR modulators; 2014.
  • Lu C, Kirsch B, Maurer CK, et al. Optimization of anti-virulence PqsR antagonists regarding aqueous solubility and biological properties resulting in new insights in structure–activity relationships. Eur J Med Chem. 2014;79:173–183. doi:10.1016/j.ejmech.2014.04.016
  • Lu C, Kirsch B, Zimmer C, et al. Discovery of antagonists of PqsR, a key player in 2-alkyl-4-quinolone-dependent quorum sensing in Pseudomonas aeroginosae. Chem Biol. 2012;19(3):381–390. doi:10.1016/j.chembiol.2012.01.015
  • Lu C, Maurer CK, Kirsch B, Steinbach A, Hartmann RW. Overcoming the unexpected functional inversion of a PqsR antagonist in Pseudomonas aeruginosa: an in vivo potent antivirulence agent targeting pqs quorum sensing. Angewandte Chemie. 2014;53(4):1109–1112. doi:10.1002/anie.201307547
  • Schütz C, D-K H, Hamed MM, et al. A new PqsR inverse agonist potentiates tobramycin efficacy to eradicate pseudomonas aeruginosa biofilms. Adv Sci. 2021;8(12):2004369. doi:10.1002/advs.202004369
  • Schütz C, Hodzic A, Hamed M, et al. Divergent synthesis and biological evaluation of 2-(trifluoromethyl)pyridines as virulence-attenuating inverse agonists targeting PqsR. Eur J Med Chem. 2021;226:113797. doi:10.1016/j.ejmech.2021.113797
  • Nafee N, Husari A, Maurer CK, et al. Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release. 2014;192:131–140. doi:10.1016/j.jconrel.2014.06.055
  • Marangon CA, Martins VCA, Ling MH, et al. Combination of rhamnolipid and chitosan in nanoparticles boosts their antimicrobial efficacy. ACS Appl Mater Interfaces. 2020;12(5):5488–5499. doi:10.1021/acsami.9b19253
  • Alkawash MA, Soothill JS, Schiller NL. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. Apmis. 2006;114(2):131–138. doi:10.1111/j.1600-0463.2006.apm_356.x
  • Yang M, Yang SX, Liu ZM, Li NN, Li L, Mou HJ. Rational Design of alginate lyase from microbulbifer sp. Q7 to improve thermal stability. Mar Drugs. 2019;17(6):378. doi:10.3390/md17060378
  • Yang M, Yu Y, Yang S, Shi X, Mou H, Li L. Expression and characterization of a New PolyG-specific alginate lyase from marine bacterium microbulbifer sp. Q7. Front Microbiol. 2018;9:2894. doi:10.3389/fmicb.2018.02894
  • Wan B, Zhu Y, Tao J, et al. Alginate lyase guided silver nanocomposites for eradicating Pseudomonas aeruginosa from lungs. ACS Appl Mater Interfaces. 2020;12(8):9050–9061. doi:10.1021/acsami.9b21815
  • Kamal AAM, Petrera L, Eberhard J, Hartmann RW. Structure–functionality relationship and pharmacological profiles of Pseudomonas aeruginosa alkylquinolone quorum sensing modulators. Org Biomol Chem. 2017;15(21):4620–4630. doi:10.1039/C7OB00263G
  • Shi C, Ahmad Khan S, Wang K, Schneider M. Improved delivery of the natural anticancer drug tetrandrine. Int J Pharm. 2015;479(1):41–51. doi:10.1016/j.ijpharm.2014.12.022
  • Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E, Winstanley C. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Visualized Exp. 2012;64:e3857.
  • Nafee N, Forier K, Braeckmans K, Schneider M. Mucus-penetrating solid lipid nanoparticles for the treatment of cystic fibrosis: proof of concept, challenges and pitfalls. Eur J Pharm Biopharm. 2018;124:125–137. doi:10.1016/j.ejpb.2017.12.017
  • Friedl H, Dünnhaupt S, Hintzen F, et al. Development and evaluation of a novel mucus diffusion test system approved by self-nanoemulsifying drug delivery systems. J Pharmaceut Sci. 2013;102(12):4406–4413. doi:10.1002/jps.23757
  • Stöber W. A note on the aerodynamic diameter and the mobility of non-spherical aerosol particles. J Aerosol Sci. 1971;2(4):453–456. doi:10.1016/0021-8502(71)90048-6
  • Makled S, Boraie N, Nafee N. Nanoparticle-mediated macrophage targeting—a new inhalation therapy tackling tuberculosis. Drug Delivery Transl Res. 2021;11(3):1037–1055. doi:10.1007/s13346-020-00815-3
  • Song Y, Salinas D, Nielson DW, Verkman AS. Hyperacidity of secreted fluid from submucosal glands in early cystic fibrosis. Am J Physiol Cell Physiol. 2006;290(3):C741–C749. doi:10.1152/ajpcell.00379.2005
  • Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018;133:285–308. doi:10.1016/j.ejpb.2018.10.017
  • Mohapatra BR. Biocatalytic characteristics of chitosan nanoparticle-immobilized alginate lyase extracted from a novel Arthrobacter species AD-10. Biocatal Agric Biotechnol. 2020;23:101458. doi:10.1016/j.bcab.2019.101458
  • Panigrahi KC, Patra CN, Jena GK, et al. Gelucire: a versatile polymer for modified release drug delivery system. Future J Pharm Sci. 2018;4(1):102–108. doi:10.1016/j.fjps.2017.11.001
  • Popat A, Liu J, Lu GQ, Qiao SZ. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J Mater Chem. 2012;22(22):11173–11178. doi:10.1039/c2jm30501a
  • Chronopoulou L, Massimi M, Giardi MF, et al. Chitosan-coated PLGA nanoparticles: a sustained drug release strategy for cell cultures. Colloids Surf B. 2013;103:310–317. doi:10.1016/j.colsurfb.2012.10.063
  • Mazzarino L, Borsali R, Lemos‐Senna E. Mucoadhesive films containing chitosan‐coated nanoparticles: a new strategy for buccal curcumin release. J Pharmaceut Sci. 2014;103(11):3764–3771. doi:10.1002/jps.24142
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Delivery Rev. 2001;47(2–3):165–196. doi:10.1016/S0169-409X(01)00105-3
  • Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23(12):2709–2728. doi:10.1007/s11095-006-9104-4
  • Si L, Yang S, Lin R, Gu S, Yan C, Yan J. SiO2–alginate–melittin nano-conjugates suppress the proliferation of ovarian cancer cells: a controlled release approach leveraging alginate lyase. Cancer Nanotechnol. 2024;15(1):4. doi:10.1186/s12645-023-00241-3
  • Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr CM. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine. 2007;3(3):173–183. doi:10.1016/j.nano.2007.03.006
  • Taetz S, Nafee N, Beisner J, et al. The influence of chitosan content in cationic chitosan/PLGA nanoparticles on the delivery efficiency of antisense 2’-O-methyl-RNA directed against telomerase in lung cancer cells. Eur J Pharm Biopharm. 2009;72(2):358–369. doi:10.1016/j.ejpb.2008.07.011
  • Huck BC, Hartwig O, Biehl A, et al. Macro- and microrheological properties of mucus surrogates in comparison to native intestinal and pulmonary mucus. Biomacromolecules. 2019;20(9):3504–3512. doi:10.1021/acs.biomac.9b00780
  • Pritchard Manon F, Powell Lydia C, Jack Alison A, et al. A low-molecular-weight alginate oligosaccharide disrupts pseudomonal microcolony formation and enhances antibiotic effectiveness. Antimicrob Agents Chemother. 2017;61(9):e00762–00717. doi:10.1128/AAC.00762-17
  • Finke JH, Richter C, Gothsch T, Kwade A, Büttgenbach S, Müller-Goymann CC. Coumarin 6 as a fluorescent model drug: how to identify properties of lipid colloidal drug delivery systems via fluorescence spectroscopy? Eur J Lipid Sci Technol. 2014;116(9):1234–1246. doi:10.1002/ejlt.201300413
  • Suk JS, Lai SK, Wang -Y-Y, et al. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials. 2009;30(13):2591–2597. doi:10.1016/j.biomaterials.2008.12.076
  • Schlafer S, Meyer RL. Confocal microscopy imaging of the biofilm matrix. J Microbiol Methods. 2017;138:50–59. doi:10.1016/j.mimet.2016.03.002
  • Strathmann M, Wingender J, Flemming H-C. Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J Microbiol Methods. 2002;50(3):237–248. doi:10.1016/S0167-7012(02)00032-5
  • Messiaen AS, Forier K, Nelis H, Braeckmans K, Coenye T, Kaufmann GF. Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms. PLoS One. 2013;8(11):e79220. doi:10.1371/journal.pone.0079220
  • Ungaro F, d’Angelo I, Coletta C, et al. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J Control Release. 2012;157(1):149–159. doi:10.1016/j.jconrel.2011.08.010
  • Tan Y, Ma S, Leonhard M, et al. Enhancing antibiofilm activity with functional chitosan nanoparticles targeting biofilm cells and biofilm matrix. Carbohydr Polym. 2018;200:35–42. doi:10.1016/j.carbpol.2018.07.072
  • Patel KK, Agrawal AK, Anjum MM, et al. DNase-I functionalization of ciprofloxacin-loaded chitosan nanoparticles overcomes the biofilm-mediated resistance of Pseudomonas aeruginosa. Appl Nanosci. 2020;10(2):563–575. doi:10.1007/s13204-019-01129-8
  • Nafee N, Gaber DM, Elzoghby AO, Helmy MW, Abdallah OY. Promoted antitumor activity of myricetin against lung carcinoma via nanoencapsulated phospholipid complex in respirable microparticles. Pharm Res. 2020;37(4):82. doi:10.1007/s11095-020-02794-z
  • Grace A, Sahu R, Owen DR, Dennis VA. Pseudomonas aeruginosa reference strains PAO1 and PA14: a genomic, phenotypic, and therapeutic review. Front Microbiol. 2022;13:1023523.
  • DeNegre AA, Myers K, Fefferman NH. Impact of strain competition on bacterial resistance in immunocompromised populations. Antibiotics. 2020;9(3):114. doi:10.3390/antibiotics9030114
  • Chandler Courtney E, Horspool Alexander M, Hill Preston J, et al. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J Bacteriol. 2019;201(5). doi:10.1128/jb.00595-00518
  • Mikkelsen H, McMullan R, Filloux A, Cornelis P. The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS One. 2011;6(12):e29113–e29113. doi:10.1371/journal.pone.0029113
  • Sana TG, Lomas R, Gimenez MR, et al. Differential modulation of quorum sensing signaling through QslA in Pseudomonas aeruginosa Strains PAO1 and PA14. J Bacteriol. 2019;201(21). doi:10.1128/jb.00362-00319
  • Liu Y, Ahator SD, Wang H, et al. Microevolution of the mexT and lasR reinforces the bias of quorum sensing system in laboratory strains of Pseudomonas aeruginosa PAO1. Front Microbiol. 2022;13:821895.
  • Luria-Bertani LB. Liquid medium. Cold Spring Harbor Protocols. 2006;2006(1):pdb.rec8141.
  • Korgaonkar AK, Whiteley M. Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J Bacteriol. 2011;193(4):909–917. doi:10.1128/JB.01175-10
  • Neve Rachel L, Carrillo Brent D, Phelan Vanessa V. Impact of artificial sputum medium formulation on Pseudomonas aeruginosa secondary metabolite production. J Bacteriol. 2021;203(21):e00250–00221. doi:10.1128/JB.00250-21
  • Matilla Miguel A, Martín-Mora D, Gavira Jose A, Krell T. Pseudomonas aeruginosa as a model to study chemosensory pathway signaling. Microbiol Mol Biol Rev. 2021;85(1). doi:10.1128/mmbr.00151-00120
  • Rozenbaum R Antimicrobial and nanoparticle penetration and killing in infectious biofilms. Groningen, Rijksuniversiteit Groningen; 2019.
  • Reighard KP, Hill DB, Dixon GA, Worley BV, Schoenfisch MH. Disruption and eradication of P. aeruginosa biofilms using nitric oxide-releasing chitosan oligosaccharides. Biofouling. 2015;31(9–10):775–787. doi:10.1080/08927014.2015.1107548
  • Gimmestad M, Sletta H, Ertesvåg H, et al. The Pseudomonas fluorescens AlgG Protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation. J Bacteriol. 2003;185(12):3515–3523. doi:10.1128/JB.185.12.3515-3523.2003
  • Russell NJ, Gacesa P. Chemistry and biology of the alginate of mucoid strains of Pseudomonas aeruginosa in cystic fibrosis. Mol Aspect Med. 1988;10(1):1–91. doi:10.1016/0098-2997(88)90002-7
  • Boyd A, Chakrabarty AM. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol. 1994;60(7):2355–2359. doi:10.1128/aem.60.7.2355-2359.1994
  • Lamppa JW, Griswold KE. Alginate lyase exhibits catalysis-independent biofilm dispersion and antibiotic synergy. Antimicrob Agents Chemother. 2013;57(1):137–145. doi:10.1128/AAC.01789-12
  • Meers P, Neville M, Malinin V, et al. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother. 2008;61(4):859–868. doi:10.1093/jac/dkn059
  • Alhajlan M, Alhariri M, Omri A. Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors. Antimicrob Agents Chemother. 2013;57(6):2694–2704. doi:10.1128/AAC.00235-13
  • Drulis-Kawa Z, Gubernator J, Dorotkiewicz-Jach A, Doroszkiewicz W, Kozubek A. In vitro antimicrobial activity of liposomal meropenem against Pseudomonas aeruginosa strains. Int J Pharm. 2006;315(1–2):59–66. doi:10.1016/j.ijpharm.2006.02.017
  • Jesus S, Schmutz M, Som C, Borchard G, Wick P, Borges O. Hazard assessment of polymeric nanobiomaterials for drug delivery: what can we learn from literature so far. Front Bioeng Biotechnol. 2019;7:261. doi:10.3389/fbioe.2019.00261
  • Yermak IM, Davidova VN, Gorbach VI, et al. Forming and immunological properties of some lipopolysaccharide–chitosan complexes. Biochimie. 2006;88(1):23–30. doi:10.1016/j.biochi.2005.07.004
  • Yamada H, Koike N, Ehara T, Matsumoto T. Measuring antimicrobial susceptibility of Pseudomonas aeruginosa using Poloxamer 407 gel. J Infect Chemother. 2011;17(2):195–199. doi:10.1007/s10156-010-0109-x
  • Taylor BJ, Marsh LL, Nosworthy JO, Williams DW. A novel approach to antibiofilm susceptibility testing using a thermo-reversible matrix. J Wound Care. 2016;25(2):62–67. doi:10.12968/jowc.2016.25.2.62
  • Bose SK, Nirbhavane P, Batra M, Chhibber S, Harjai K. Nanolipoidal α-terpineol modulates quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa. Nanomedicine. 2020;15(18):1743–1760. doi:10.2217/nnm-2020-0134
  • Cheow WS, Chang M, Hadinoto K. The roles of lipid in anti-biofilm efficacy of lipid-polymer hybrid nanoparticles encapsulating antibiotics. Colloids Surf A. 2011;389(1–3):158–165.
  • Badawy MSEM, Riad OKM, Taher FA, Zaki SA. Chitosan and chitosan-zinc oxide nanocomposite inhibit expression of LasI and RhlI genes and quorum sensing dependent virulence factors of Pseudomonas aeruginosa. Int J Biol Macromol. 2020;149:1109–1117. doi:10.1016/j.ijbiomac.2020.02.019
  • Germoni L, Bremer P, Lamont I. The effect of alginate lyase on the gentamicin resistance of Pseudomonas aeruginosa in mucoid biofilms. J Appl Microbiol. 2016;121(1):126–135. doi:10.1111/jam.13153
  • Rivera Aguayo P, Bruna Larenas T, Alarcón Godoy C, et al. Antimicrobial and antibiofilm capacity of chitosan nanoparticles against wild type strain of Pseudomonas sp. isolated from milk of cows diagnosed with bovine mastitis. Antibiotics. 2020;9(9):551. doi:10.3390/antibiotics9090551
  • Kragh KN, Alhede M, Kvich L, Bjarnsholt T. Into the well—A close look at the complex structures of a microtiter biofilm and the crystal violet assay. Biofilm. 2019;1:100006. doi:10.1016/j.bioflm.2019.100006
  • Quintas V, Prada-López I, Tomás I. Analyzing the Oral Biofilm Using Fluorescence-Based Microscopy: What’s in a Dye? Formatex Research Center; 2014.
  • Méndez-Vilas ADJ. Microscopy: Science, Technology, Applications and Education. Badajoz: Formatex Research Center; 2010.
  • Rizzi Yanina S, Happel P, Lenz S, et al. Chitosan and chitin deacetylase activity are necessary for development and virulence of Ustilago maydis. mBio. 2021;12(2). doi:10.1128/mbio.03419-03420
  • Somashekar D, Joseph R. A new spectrophotometric method of assay for chitosanase based on calcofluor white dye binding. Carbohydr Polym. 1997;34(4):343–346. doi:10.1016/S0144-8617(97)00052-0
  • Davydova VN, Yermak IM, Gorbach VI, Krasikova IN, Solov’eva TF. Interaction of bacterial endotoxins with chitosan. Effect of endotoxin structure, chitosan molecular mass, and ionic strength of the solution on the formation of the complex. Biochem Biokhimiia. 2000;65(9):1082–1090.