41
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Gold Nanorod-Loaded Nano-Contrast Agent with Composite Shell-Core Structure for Ultrasonic/Photothermal Imaging-Guided Therapy in Ischemic Muscle Disorders

, , , , , , & ORCID Icon show all
Pages 4121-4136 | Received 08 Nov 2023, Accepted 12 Apr 2024, Published online: 07 May 2024

References

  • Dunford EC, Au JS, Devries MC, Phillips SM, MacDonald MJ. Cardiovascular aging and the microcirculation of skeletal muscle: using contrast-enhanced ultrasound. Am J Physiol Heart Circulatory Physiol. 2018;315(5):H1194–h1199. doi:10.1152/ajpheart.00737.2017
  • Hotfiel T, Hoppe MW, Heiss R, et al. Quantifiable contrast-enhanced ultrasound explores the role of protection, rest, ice (Cryotherapy), compression and elevation (PRICE) therapy on microvascular blood flow. Ultrasound Med Biol. 2021;47(5):1269–1278. doi:10.1016/j.ultrasmedbio.2021.01.003
  • Kunz P, Kiesl S, Groß S, Kauczor HU, Schmidmaier G, Fischer C. Intra-observer and device-dependent inter-observer reliability of contrast-enhanced ultrasound for muscle perfusion quantification. Ultrasound Med Biol. 2020;46(2):275–285. doi:10.1016/j.ultrasmedbio.2019.10.007
  • Doll J, Waizenegger S, Schmidmaier G, Weber MA, Fischer C. Contrast-enhanced ultrasound: a viable diagnostic tool in predicting treatment failure after non-union revision surgery for upper- and lower-limb non-unions. Ultrasound Med Biol. 2021;47(11):3147–3158. doi:10.1016/j.ultrasmedbio.2021.07.020
  • Fischer C, Haug T, Weber MA, Kauczor HU, Bruckner T, Schmidmaier G. [Contrast-Enhanced Ultrasound (CEUS) Identifies Perfusion Differences Between Tibial Fracture Unions and Non-Unions]. Kontrastmittelverstärkter Ultraschall (CEUS) zur Beurteilung der tibialen Knochenperfusion bei physiologischer und gestörter Frakturheilung mit Pseudarthrosenbildung. Ultraschall der Medizin. 2020;41(1):44–51. German. doi:10.1055/a-0637-1679
  • Kim GW, Kang C, Oh YB, Ko MH, Seo JH, Lee D. ultrasonographic imaging and anti-inflammatory therapy of muscle and tendon injuries using polymer nanoparticles. Theranostics. 2017;7(9):2463–2476. doi:10.7150/thno.18922
  • Zhang W, Zang Y, Lu Y, Han J, Xiong Q, Xiong J. Photothermal effect and multi-modality imaging of up-conversion nanomaterial doped with gold nanoparticles. Int J Mol Sci. 2022;23(3):1.
  • Shang H, Gu H, Zhang N. From traditional to novel treatment of arthritis: a review of recent advances in nanotechnology-based thermal therapy. Nanomedicine. 2021;16(23):2117–2132. doi:10.2217/nnm-2021-0182
  • Shan H, Zhou X, Tian B, et al. Gold nanorods modified by endogenous protein with light-irradiation enhance bone repair via multiple osteogenic signal pathways. Biomaterials. 2022;284:121482. doi:10.1016/j.biomaterials.2022.121482
  • Wu Y, Liao Q, Wu L, et al. ZnL(2)-BPs integrated bone scaffold under sequential photothermal mediation: a win-win strategy delivering antibacterial therapy and fostering osteogenesis thereafter. ACS nano. 2021;15(11):17854–17869. doi:10.1021/acsnano.1c06062
  • Yang D, Ni Y, Kong X, et al. Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS nano. 2021;15(9):14653–14661. doi:10.1021/acsnano.1c04384
  • Zhang F, Hou Y, Zhu M, et al. Death pathways of cancer cells modulated by surface molecule density on gold nanorods. Adv Sci. 2021;8(22):e2102666. doi:10.1002/advs.202102666
  • Kim HS, Lee DY. Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers. 2018;10(9):961. doi:10.3390/polym10090961
  • Wang L, Lu H, Gao Q, et al. A multifunctional theranostic contrast agent for ultrasound/near infrared fluorescence imaging-based tumor diagnosis and ultrasound-triggered combined photothermal and gene therapy. Acta Biomater. 2019;99:373–386. doi:10.1016/j.actbio.2019.09.015
  • Xi Y, Pan W, Liu Y, et al. α-Lipoic acid loaded hollow gold nanoparticles designed for osteoporosis treatment: preparation, characterization and in vitro evaluation. Artif Cells Nanomed Biotechnol. 2023;51(1):131–138. doi:10.1080/21691401.2022.2149542
  • Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17(11):657–674. doi:10.1038/s41571-020-0410-2
  • Zhang X, Cheng G, Xing X, et al. Near-infrared light-triggered porous AuPd alloy nanoparticles to produce mild localized heat to accelerate bone regeneration. J Phys Chem Lett. 2019;10(15):4185–4191. doi:10.1021/acs.jpclett.9b01735
  • Belcik JT, Davidson BP, Xie A, et al. Augmentation of Muscle Blood Flow by Ultrasound Cavitation Is Mediated by ATP and Purinergic Signaling. Circulation. 2017;135(13):1240–1252. doi:10.1161/circulationaha.116.024826
  • Zhao YC, Guo W, Gao BH. Hypoxic training upregulates mitochondrial turnover and angiogenesis of skeletal muscle in mice. Life Sci. 2022;291:119340. doi:10.1016/j.lfs.2021.119340
  • Elbialy ZI, Assar DH, Abdelnaby A, et al. Healing potential of Spirulina platensis for skin wounds by modulating bFGF, VEGF, TGF-ß1 and α-SMA genes expression targeting angiogenesis and scar tissue formation in the rat model. Biomed Pharmacothe. 2021;137:111349. doi:10.1016/j.biopha.2021.111349
  • Chen L, Ma H, Liu H, et al. Quantitative photoacoustic imaging for early detection of muscle ischemia injury. Am J Transl Res. 2017;9(5):2255–2265.
  • Hsu JC, Tang Z, Eremina OE, et al. Nanomaterial-based contrast agents. Nat Rev Method Primers. 2023;3(1):30. doi:10.1038/s43586-023-00211-4
  • Tian Y, Liu Z, Tan H, et al. New Aspects of Ultrasound-Mediated Targeted Delivery and Therapy for Cancer. Int j Nanomed. 2020;15:401–418. doi:10.2147/ijn.S201208
  • Li M, Bian X, Chen X, et al. Multifunctional liposome for photoacoustic/ultrasound imaging-guided chemo/photothermal retinoblastoma therapy. Drug Delivery. 2022;29(1):519–533. doi:10.1080/10717544.2022.2032876
  • Liu WW, Huang SH, Li PC. Synchronized optical and acoustic droplet vaporization for effective sonoporation. Pharmaceutics. 2019;11(6):1.
  • Zhang Q, Yang Y, Xue H, et al. Intensified and controllable vaporization of phase-changeable nanodroplets induced by simultaneous exposure of laser and ultrasound. Ultrason Sonochem. 2023;94:106312. doi:10.1016/j.ultsonch.2023.106312
  • Hanieh PN, Ricci C, Bettucci A, et al. Ultrastable shelled PFC nanobubbles: a platform for ultrasound-assisted diagnostics, and therapy. Nanomedicine. 2022;46:102611. doi:10.1016/j.nano.2022.102611
  • Tamarov K, Sviridov A, Xu W, et al. Nano air seeds trapped in mesoporous janus nanoparticles facilitate cavitation and enhance ultrasound imaging. ACS Appl Mater Interfaces. 2017;9(40):35234–35243. doi:10.1021/acsami.7b11007
  • Hallan SS, Amirian J, Brangule A, Bandere D. Lipid-based nano-sized cargos as a promising strategy in bone complications: a review. Nanomaterials. 2022;12(7):1146. doi:10.3390/nano12071146
  • Li Z, Lai M, Zhao S, et al. Ultrasound molecular imaging for multiple biomarkers by serial collapse of targeting microbubbles with distinct acoustic pressures. Small. 2022;18(22):e2108040. doi:10.1002/smll.202108040
  • Yu M, Xu X, Cai Y, Zou L, Shuai X. Perfluorohexane-cored nanodroplets for stimulations-responsive ultrasonography and O(2)-potentiated photodynamic therapy. Biomaterials. 2018;175:61–71. doi:10.1016/j.biomaterials.2018.05.019
  • Soman D, Hodovan J, Macon CJ, et al. Contrast ultrasound assessment of skeletal muscle recruitable perfusion after permanent left ventricular assist device implantation: implications for functional recovery. J Am Soc Echocard. 2022;35(5):495–502. doi:10.1016/j.echo.2021.12.014
  • Jiang X, Savchenko O, Li Y, et al. A review of low-intensity pulsed ultrasound for therapeutic applications. IEEE Transact Bio Med Engine. 2019;66(10):2704–2718. doi:10.1109/tbme.2018.2889669
  • Belcik JT, Mott BH, Xie A, et al. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation. Circ Cardiovasc Imaging. 2015;8(4). doi:10.1161/CIRCIMAGING.114.002979
  • Lee D, Bae S, Ke Q, et al. Hydrogen peroxide-responsive copolyoxalate nanoparticles for detection and therapy of ischemia-reperfusion injury. J Controll Rel. 2013;172(3):1102–1110. doi:10.1016/j.jconrel.2013.09.020
  • Jung E, Noh J, Kang C, Yoo D, Song C, Lee D. Ultrasound imaging and on-demand therapy of peripheral arterial diseases using H(2)O(2)-Activated bubble generating anti-inflammatory polymer particles. Biomaterials. 2018;179:175–185. doi:10.1016/j.biomaterials.2018.07.003